
AD-A275 153

High-Speed, Low-Cost Workstation
* for
* Computation-Intensive Statistics

P.R. Pukite
J. PukiteI ~M.J. Kemnal
H. ShenI

This material is based upon work supported by the National Science Foundation
under award number ISI 89-60134. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

IDAINAId7 Columbia Heights, Minnesota, 55421

I •m=M
4 June 20, 1990

-94127071d

form Appoveodc

REPORT DOCUMENTATION PAGE or•m f. 0700o1M

c spou biden ft th co•lecton of inftMi m eottt to aWrage I ho w w eronto. wickuding thO turn, for rev g itumctoft ewcg• ata em dw. ct
gasb- malladnd iatdataneedd. aMcontli•ta" I vwngthecolectlfo informawon cow c mn• ' bde t euase - &W r0w hWt of tmtb

*~~~~~~~~~~~~ =6c. fbemte.nu~gsg~osltrdcn hsbd. to Wmeisngm'ieadrtVSif R 0~00`610 f. o infonmati.n OperaloseandflepW 01490 IJS Juaeio
S Oaisin ey. uite 5204. Ar~ngton. V 2 420. . anto the Office oManagementaad dge. a rwork educt o~lemn O- .

I. AGENCY USE ONLY (Leave blank) 2. REPORT DATE - 3. REPORT TYPE AND DATES COVERED

I June 20, 1990 FINAL 1-1-90 to 6-30-90
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

High-Speed, Low-Cost Workstation for Computation-Intensive Statistics

ISI-8960134
6. AUTHOR(S)

P. R. Pukite, J. Pukite, M.J. Kemal, and H. Shen

7. I MlNG ORGANIZATION NAME(S) AND ADORESS(ES) S. PERFORMING ORGANIZATION
DAINA REPORT NUMBER

4960 Fillmore Street NE
Columbia HTS, MN 55421-1916
email:puk@maroon.tc.umn.edu

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING/ MONITORING
* AGENCY REPORT NUMBER

National Science Foundation

Washington, D.C. 20550

11. SUPPLEMENTARY NOTES

This is a Small Business Innovative Research Program, Phase I

1I2a. OISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unlimited distribution

13. ABSTRACT (Maximum 200 words)

High-performance and low-cost workstations are essential for economical solution of computationally inten-
sive statistical problems. This program evaluated the use of a digital signal processor (DSP) as a "number-
cruncher" in these applications to achieve a significant improvement in speed at an acceptable cost. To dem-
onstrate the feasibility of this approach, a number of representative statistical procedures were selected. These
statistical procedures were examined in detail, their common functions were identified, and their hierarchical
structure determined. A set of DSP-based mathematical and statistical subroutines were coded and optimized
for speed. These subroutines were then incorporated in the selected statistical application programs. Bench-
mark evaluation was performed using a commercial DSP peripheral board, interfaced to a personal computer.
A total of 62 low level software routines and 15 diverse statistical applications were benchmarked. The feasi-
bility of the proposed approach was conclusively demonstrated, with 100 to 200 times computation speed
improvements over a standard 386-type personal computer operating at 20 MHz clock frequency.

There are many potential applications of a cost-effective workstation in industrial, government, and academic
settings. The proposed statistical workstation will be designed to meet the need of these users.

14. SUBJECT TERMS IS. NUMBER Of PAGES

Digital Signal Processing, Statistics, Mathematics, Computational, Simulation, Per- 165
sonal Computer, Workstation, Hardware Accelerator, DSP, Software 16. PRICE COD.

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Preicrubed by ANSI Std. Z39-1I
296. 102

DAINA
4960 Fillmore Street NE

Columbia Heights, MN 55421
(612)781-7600

January 19, 1994

Subject: Document Transmittal

To: Defense Technical Information Center
Technical Document Acquisition - DTIC-OCP

I am enclosing one copy each of the following reports:

1. High-Speed, Low-Cost Workstation for Computation-Intensive Statistics (Unlimited)
2. Advanced Tools for Evaluating Fault-Tolerant Systems (Government Only)

for potential inclusion in the DTIC collection.

Submission of these reports to DTIC was not required, but we are referencing them in our
DoD sponsored work.

Sincerely,

Janis Pukite
Owner / DAINA
DTIC U/C 27446

Atch:

2 Technical reports

PREFACE

I Work under this grant was performed between January 1990 and July 1990. We wish to thank
Claude L Berman for editorial assistantship, Professor W.F. Eddy for providing information and
comments on statistical computing, and Deborah Owczarek-Murphy of AT&T for providing the DSP

C compiler and software updates.

Acoeosiol For

U w

I D~"TrC 0I

TRADEMARKS ~ CQAT

Te.b c s mila Qým tndo at odý f B u,ý .ai.J I.. US-DM sa Wlmama ma W..&ina at Mtlcmae C01p. UNIX, WE." WSP3 W W=32 -sd u db AT&T I.-
1-.3'.. tuidmewkoftLc~m Davuakq Cou. IBM is a usdonsot ~afhain huw adimmNa Corp. DEC mat VAX am tfudemb otDhNal Eqidm Corp. NEC us "eu~k
oNippmu maoum Corp. 1SjM, 086. A6 uso tn at bed Corp. NeXT h studomek oNeXT, 1w. MackobiWhiam tek atA~ph, h. TI 1..tutmaek ofT~m heamffa

SuakdW Navgrisa Wamuk f i Worls. hue. CAC is a wdimmk c(aftCoumnouahu Ammaiam. ut CantmL ho.

SSCIENCE FOUNDATION FINAL PROJECT REPORT
Washingtoe D.C. i0M NSF PORM UA

N N PLEASE READ INSTRUCTIONS ON REVERSE BEFORE COMPLETING
PART I-PROJECT IDENTIFICATION INFORMATION

1. Institution and Address 2. NSF Program 3mf l l au 3. NSF Award Number
DAINA Innovation Research (NSF 89-30) 151-8960134
4960 Fillmore Street North East 4. Award Period &. Cumulative Award Amount
Columbia Heights, MN 55421 From 1-1-90 To 6-30-90 $44,806

6. Project Title

High-Speed, Low-Cost Workstation for Computation-Intensive Statistics

PART li-SUMMARY OF COMPLETED PROJECT (FOR PUBLIC USE)

High-perforimnce and low-cost workstations are essential for economical solution of computationally intensive
statistical problems. This program evaluated the use of a digital signal processor (DSP) as a "number-cruncher' in
these applications to achieve a significant improvement in speed at an acceptable cost. To demonstrate the
feasibility of this approach, a number of representative statistical procedures were selected. These statistical
procedures were examined in detail, their common functions were identified, and their hierarchical structure
determined. A set of DSP-based mathematical and statistical subroutines were coded and optimized for speed.
These subroutines were then incorporated in the selected statistical application programs. Benchmark evaluation
was performed using a commercial DSP peripheral board, interfaced to a personal computer. A total of 62 low
level software routines and 15 diverse statistical applications were benchmarked. The feasibility of the proposed
approach was conclusively demonstrated, with 100 to 200 times computation speed improvements over a standard
386-type personal computer operating at 20 MHz clock frequency.

There are many potential applications of a cost-effective workstation in industrial, government, and academic
settings. The proposed statistical workstation will be designed to meet the need of these users.

PART Ill-TECHNICAL INFORMATION (FOR PROGRAM MANAGEMENT USES)

TO BE FURNISHED
ITEM (Check ap te blocks) NONE ATTACHED PREVIOUSLY SEPARATELY TO PROGRAMFURNISHED

I. Abstracts of Theses _

b. Publication Citations
c. Data on Scientific Collaborators x

d. Information on Inventions x
e. Technical Description of Project and Results x
f. Other (poecify)

2. Principal Investigator/Project Director Namne (Typed) 3. Principal InvestigatorlProject Director Signature 4. Date

Paul R. Pukite

3 NSF UMG oe. 3i601

Attachment to PART III

b. -An Efficient Algorithm for Balanced Bootstrap Simulations', HongRu Shen and Paul R. Pukite, submitted
to Communications in Staistic - Simulation and Computation.

c. Paul R. Puldte Principal Investigator
Janis Pukita Owner
Michael J. Kernal Research Assistant Electrical Engineering/Computer Science

- student
HongRu Shin Research Assistant Mechanical Engineering graduate student
Claude L. Berman Editorial Assistant Mecahnical Engineering graduate student

TABLE OF CONTENTS

1 INTRODUCTION .. I
1.1 Background: Statistical Computing Trends 1
1.2 PC-host, DSP-based Statistics Workstation 2
1.3 Phase I Research Objectives .. 3

1.3.1 Algorithm Selection, Evaluation, and Optimization 3
1.3.2 Interface Definition 4
1.3.3 Performance and Cost Evaluation 4

1.4 Concept Feasibility Questions and Answers 4
1.5 Report Outline .. 5

2 STATISTICAL COMPUTING NEEDS 7
2.1 Statistical User Needs ... 7
2.2 Statistical Software Program Development 8
2.3 Conventional Statistical Analysis Packages 9

2.3.1 Types of Statistical Packages 10
2.3.2 Representative Examples 12

2.4 Additional Tools ... 12
2.5 Incorporation of Statistical Tools into the Workstation Environment 12

3 POTENTIAL STATISTICAL APPLICATIONS 13
3.1 Analysis of Statistical Algorithms and Techniques 13

3.1.1 Basic and Descriptive Statistics 13
3.1.2 Regression ... 13
3.1.3 Correlation .. 14
3.1.4 Analysis of Variance 14
3.1.5 Categorical and Discrete Data Analysis 14
3.1.6 Nonparametric Statistics 14
3.1.7 Tests of Goodness of Fit, Significance, and Randomness 14
3.1.8 Time Series and Forecasting 15
3.1.9 Covariance Structures and Factor Analysis 15
3.1.10 Discriminant Analysis 15
3.1.11 Cluster Analysis ... 15
3.1.12 Survival Analysis, Life Testing, and Reliability 16
3.1.13 Multidimensional Scaling 16
3.1.14 Density, Hazard, and Nonlinear Estimation 16
3.1.15 Probability Distribution Function and Inverses 16
3.1.16 Random Number Generator 16
3.1.17 Mathematical Operations 16
3.1.18 Exploratory Data Analysis 17

3.2 Computation-Intensive Algorithms 17
3.2.1 Bootstrapping and Resampling 18
3.2.2 Projection Pursuit (PP) 18
3.2.3 Bayesian Analysis ... 19
3.2.4 Iterative Techniques 19

3.3 Objectives for Algorithm Development and Evaluation 19

I
4 BASIC LOW-LEVEL STATISTICAL SUBROUTINES 21

4.1 Low-level Algorithms ... 21
4.1.1 Low-level Structure 21
4.1.2 Basic Statistical Analysis Subroutines - BSAS 22
4.1.3 Implementation Approach 23

4.2 Grouping of Low-level Routines 23
4.2.1 Vector Operations .. 25
4.2.2 Vector/Matrix and Matrix Operations 25
4.2.3 Polynomial Evaluation 25
4.2.4 Random Number Routines 26
4.2.5 Signal Processing and Filtering 26 I
4.2.6 Statistical Operations 26
4.2.7 Math Operations ... 27
4.2.8 Sort Operations .. 27I
4.2.9 Scaling Operations .. 27

4.3 Intermediate Level Algorithms 27
4.4 Prototyped Examples ... 27

5 STATISTICS WORKSTATION DESIGN 30
5.1 Key DSP-based Statistics Workstation Design Objectives 31 3

5.1.1 High Speed Floating Point Computation 31
5.1.2 Low Cost Components 31
5.1.3 Compact Design .. 31
5.1.4 Operational Versatility 31
5.1.5 User Programmability 32

5.2 Proposed System Architecture and Configuration 32
5.2.1 Host Microprocessor 32
5.2.2 D SP ... 33
5.2.3 M emory .. 34
5.2.4 Commercial DSP Boards 35
5.2.5 Graphics Processor .. 35

5.3 Statistics Workstation Functional Design and Operation 35
5.3.1 Function Assignment to the Host PC and DSP 35 I
5.3.2 Host PC Functions .. 35
5.3.3 DSP Functions ... 36
5.3.4 Shared Functions ... 36 U
5.3.5 Data Transfer .. 37

5.4 Extensions for Statistical Applications 37

6 DSP SOFTWARE DEVELOPMENT NEEDS 38
6.1 DSP Software Development Objectives 38
6.2 Programming Tool Selection .. 38 I

6.2.1 Assembly Language 39
6.2.2 High-level Programming Language 39
6.2.3 Macro Processors ... 40 3
6.2.4 Other DSP Compilers 40

6.3 Software Development Guidelines 40
6.3.1 Algorithm Hierarchy 41

n!

6.3.2 Problem Oriented Language 42
6.3.3 Data Structures .. 43
6.3.4 DSP Programming Approach 44

6.4 Computation Speed Optimization. 46

7 STATISTICS WORKSTATION INTERFACE 50
7.1 Software Interface ... 50

7.1.1 Software Description Meta-language 50
7.1.2 Operating System Interface 54
7.1.3 DSP Program Interface 54
7.1.4 Detailed Explanation of Main Program Tasks 55

7.2 Hardware Interface .. 57
7.2.1 Processor Interface .. 57
7.2.2 DSP Interface to External World 57
7.2.3 Graphics Interface .. 57
7.2.4 Interrupts ... 58
7.2.5 Multiprocessor DSP Systems 58

8 PERFORMANCE BENCHMARKING 59
8.1 DSP Benchmarking .. 59

8&1.1 Hardware Configuration and Characteristics 59
8.1.2 Operating System and Support Software 59
&1.3 Benchmark Timing .. 60
8.1.4 Overhead Evaluation 61

8.2 Low-level Performance .. 62
8.2.1 Optimized vs. Compiled...................................62
8.2.2 Summary of the Statistics Workstation Low-Level Routine

Performance .. 66
8.3 Results of Computation-intensive Algorithm Comparisons 66

8.3.1 Correlation coefficient (bootstrapped) 66
8.3.2 Multiple linear regression using SVD (bootstrapped) 67
8.3.3 Autoregressive model (bootstrapped) 69
8.3.4 1D and 2D projection pursuit. 71
8.3.5 Markov modeling. .. 72
8.3.6 Iterative techniques (MacKay's & SOR) 74
8.3.7 Density estimation ... 76
8.3.8 Survival analysis (Kaplan-Meier estimate) 78
8.3.9 K-means clustering (bootstrapped) 80
8.3.10 Kendall's tau ... 81
8.3.11 Bayesian bootstrap (integration by Simpson's rule) 82
8.3.12 Neural networks for discrimination 83
8.3.13 Euclidean distance measurement 83
8.3.14 Stochastic simulation 84
8.3.15 Hypothesis testing 84

I II.

I
9 SW PERFORMANCE/COST EVALUATION 87

9.1 Conventional Processors versus DSP 87
9.2 Math (Numeric) Coprocessors versus DSP 87
9.3 Digital Signal Processor Tradeoffs 88

9.3.1 Advantages of using DSPs 89
9.3.2 Disadvantages of using DSP's 90

9.4 Future DSP Developments ... 91
9.5 Statistical Algorithm Performance Evaluation 92

9.5.1 Analytical Approach 92
9.5.2 System-level Comparison 93

9.6 Cost Evaluation ... 95
9.6.1 Host Cost ... 95
9.6.2 DSP Board Cost .. 95
9.6.3 System Software Cost 96 I

9.7 Risk Analysis ... 97

10 CONCLUSIONS AND RECOMMENDATIONS 98 1
10.1 Conclusions ... 98

10.1.1 Feasibility of Statistics Workstation 98
10.1.2 Suitability of DSP in Specific Applications 98 I
10.1.3 Performance : 99
10.1.4 Anticipated Benefits 99

10.2 Potential Statistics Workstation Applications 99 I
10.2.1 Expected Future Improvements 100

10.3 Recommendations ... 100
10.3.1 Selected Statistics Workstation System Configuration 100
10.3.2 Statistics Workstation Hardware Recommendations 101I
10.3.3 Statistics Workstation Software Recommendations 102

REFERENCES .. 104 I
A Appendix - Glossary of Basic Statistical Subroutines 109

B Appendix - Random Number Generation 147
B.1 Random Number Generators 147
B.2 The AT&T ran function ... 147 I
B.3 Improved Random Number Generator 148

C Appendix - Floating Point Format ... 149
C.1 DSP Floating-point Format 149
C.2 Conversion Process ... 149

D Appendix - DSP Device and Board Description 151
D.1 DSP devices .. 151
D.2 DSP Boards .. 153

I
IV I

E Appendix - Low-level Subroutine Performance 154
El1 Number of Instructions .. 154
E.2 Number of Nops ... 154
E.3 Number of W ait States .. 155
E.4 Number of FLOPS ... 155
ES Execution Time .. 155
E.6 DSP32C/DSP32 Ratio ... 155

F Appendix - DSP COFF file description 160

G Appendix - Statistical Software Survey 162
G.1 Statistical packages ... 162
G.2 Spreadsheets .. 163
G.3 Algebra and Matrix Packages 163

ACRONYM S ... 164

SYM BOLS ... 165

V

I
LIST OF FIGURES

Figure 2.1 Online statistical process control. 8
Figure 2.2 Progression in building a language based application. Alongside is shown the importance
of macro-driven and compiled programs ... 11
Figure 3.1 Resampling techniques using random number generation................... 18
Figure 4.1 Statistical algorithm hierarchy .. 21
Figure 4.2 BIAS routines (single-precision) 22
Figure 4.3 BSAS routines .. 24
Figure 5.1 Price/performance ratio for different computers and the proposed statistics
workstation ... 30
Figure 5.2 DSP-based statistical workstation system architecture 32
Figure 5.3 DSP architecture .. 34
Figure 5.4 Flowchart for DSP operation with concurrency 36 I
Figure 5.5 Parallel bus transfer between host and DSP 37
Figure 5.6 Future DSP-based statistics workstation expansion 37
Figure 6.1 DSP software development using the C language 41 I
Figure 6.2 Dual software development for host and DSP 42
Figure 6.3 Comparison DSP and PC program execution............................ 44
Figure 6.4 Task assignment for host and DSP 45 I
Figure 6.5 DSP pipelined instructions 46
Figure 6.6 Register and accumulator availability chart. Example of pointer to data 48
Figure 6.7 DSP compilation and data flow process 49
Figure 7.1 Host and DSP executable files .. 53
Figure 7.2 SDL compilation process .. 53
Figure 7.3 Stages of DSP program development and execution 56
Figure 7.4 Graphics interface ... 58
Figure 8.1 Data flow for host and DSP program 60
Figure 8.2 Correlation coefficient bootstrap display 67
Figure 8.3 Time-series data 70
Figure 8.4 Autoregressive model prediction 70
Figure 8.5 1D projection that maximizes clustering 71
Figure 8.6 Tree diagram of two-dimensional projection pursuit algorithm 86
Figure 8.7 Projection pursuit result on Iris data. 386 version 72
Figure 8.8 Projection pursuit result on Iris data. DSP version 72
Figure 8.9 State diagram for repairable system 73 I
Figure 8.10 Nonlinear Markov model predator-prey plot 74
Figure 8.11 State diagram for predator-prey system 74
Figure 8.12 Density estimation of audio-frequency noise. Large windo 78 I
Figure 8.13 Density estimation on audio frequency noise. Small window 78
Figure 8.14 Performance versus dimension of K-means solution space 81
Figure 9.1 Math coprocessor data path .. 88 I
Figure 9.2 DSP32C speedup over the DSP32 used in this study for a variety of subroutines. . 89
Figure 9.3 Trend in DSP computation speed versus year. The top of the line conventional
microprocessor is shown for comparison ... 91
Figure 9.4 Overall timing performance of DSP-based algorithms compared to conventional
m icroprocessor 94

I
VI I

I

I
LIST OF TABLES

Table 4.1 BSAS/BLAS usage chart. .. 29
Table 8.1 MAC routine implementation and performance..........................62
Table 8.2 SAXPY and SDOT performance 63
Table U3 Timing for bootstrapped correlation coefficient 68
Table &4 Results of Longley benchmark..................................... 69
Table 8.5 SVD timing 69
Table 8.6 AR model bootstrapped timing 70
Table 8.7 Projection pursuit timing 72
Table 8.8 Markov model timing ... 73
Table 8.9 Iterative matrix inversion timing 75
Table 8.10 SOR timing . .. 76
Table 8.11 Density estimation timing ... 77
Table 8.12 Kaplan-Meier timing .. 80
Table 8.13 K-means timing ... 80
Table 8.14 Kendall's tau timing . .. 82
Table 8.15 Bayesian bootstrap timing ... 83
Table 8.16 PNN timing . .. 84
Table 8.17 Euclidean distance measurement 84
Table 8.18 Parsing of formulas timing 84
Table 8.19 Shuffle statistic timing .. 85

LIST OF CODE

Listing 7.1 Projection pursuit SDL .. 51
Listing 7.2 Syntax for software description language 52
Listing 7.3 SDL (named "rundspstg") to perform simple function call 53
Listing 7.4 C function "runtest.c". ... 53
Listing 7.5 C module "runmain.c" to be executed by host 53
Listing 7.6 STAGE2 C code for "rundsp.stg". Note the expanded code size 54
Listing 8.1 SDOT inner loop, 8Ix86 code .. 64
Listing 8.2 SDOT inner loop, DSP code ... 64
Listing 8.3 Homer's C code .. 65
Listing 8.4 Compiled DSP code ... 65
Listing 8.5 Optimized DSP code for Homer's algorithm 65
Listing 8.6 80x86 code for Homer's algorithm 65

Listing 8.7 Original SOR C code .. 76
Listing 8.8 DSP MAC portion of SOR ... 76
Listing 8.9 Pointer converted SOR C code 76
Listing 8.10 Kaplan-Meier algorithm . .. 78
Listing 8.11 Kaplan-Meier coded with division 79
Listing 8.12 Kaplan-Meier coded with multiplication 79

II!v
I

I 1 INTRODUCTION

Abstract. Advances in computing technology at the desktop level promise improved
efficiency for performing computationally-intensive statistics. In this report, we
demonstrate that low-cost, widely available digital signal processing chips employed
within a personal computer environment improve statistical processing speeds by two
orders of magnitude over conventional approaches.

1.1 Background: Statistical Computing Trends

Recent developments in statistical computation emphasize the use of computation-intensive
nonparametric techniques. These techniques include bootstrapping, jackknifing, nonparametric
regression, density estimation, and other similar methods [Eddy 1986a]. Other recent trends include
Bayesian analysis [Berger 1985] and exploratory data analysis [Friedman 1987].

These and other computation-intensive statistical problems are often solved on mainframes
or supercomputers. Although these installations can provide the necessary processing speed, they
suffer from restricted or delayed access, lack of security, lack of direct interactive system control, and
often poor technical assistance. There are also problems with reliable data transmission and
displaying of the results. These factors account for the user dissatisfaction reported in [Goldberg
1988, Rushinek 1986].

To alleviate the computational burden on expens.ve, larger computers and provide
convenience, the last decade has seen an increase in the use of personal computers for many
numerical tasks. Algorithms and programs that had principally been the domain of costly mainframe
computers have been routinely transferred to the more affordable personal computers. The reasons
for using mainframes in the first place (memory, speed, precision) have decreased in importance as
the personal computers' performance has improved by orders of magnitude. However, in spite of
these advances, the personal computer is still not optimal for certain tasks.

For example, a 10 MHz 286-type personal computer (PC) running Turbo C compiled code
will take 5 minutes to multiply two 100xl00 matrices (-2x10' floating point operations). Adding a
numeric coprocessor will decrease this time to 1 minute. An enhanced PC with a higher clock speed,
more efficient microprocessor, and optimized code reduces this by an order of magnitude. In
comparison, a first generation supercomputer (CRAY-1) will need 0.015 seconds to perform the same
operation [Klinger 19821, while the recent (CRAY-2) and future supercomputers (CRAY-3) will
reduce the time by an order of magnitude and more [Erisman 1988].

Since computation-intensive statistical procedures often require many iterations, it is apparent
that conventional personal computers (which often take days to solve these problems) are impractical.
Thus, there is a growing need to provide interactive, graphics-oriented, high-performance, and low-cost
statistical computing power in a microcomputer-based environment.

The goal will be to develop a flexible, interactive, high-speed, and low cost statistics
workstation (SW) capable of solving a wide range of complex statistical problems. Our investigation

I

I
offers a potential solution to this problem through the use of digital signal processing (DSP) chips
acting as peripheral computation engines to the main PC processor.

1.2 PC-host, DSP-based Statistics Workstation

The fastest growing use of statistical analysis tools is within the single-user, PC-type
environment. A particular PC application may consist of a single complex computation on a large I
data set. Another example may be a computation involving a resampling technique, such as
bootstrapping, on a small data set. Other applications may involve a complicated factorial analysis
or real-time data analysis. In general, these types of statistical problems routinely involve multivariate I
sets of data that are broken down into arrays and matrices for further processing.

The statistical analysis techniques that use data in matrix and array form are often ideal
candidates for advanced array and vector processing methods. Unfortunately, the typical PC I
architecture is not well suited for floating point computation on arrays. Therefore, improvements in
array and vector processing speed could be potentially achieved if more sophisticated tools are
interfaced to a PC. Architectures such as vector, parallel, or systolic processors are effective, but
presently available only in supercomputers or in specialized parallel computers [Petersen 1983, Eddy
1986e]. These also require advanced software compilation techniques, such as the unrolling of loops
(which add additional memory requirements), to make them effective [Grier 1988].

As an alternative, a DSP is a special purpose microprocessor optimized for floating point
processing of +ita arrays. Due to the DSP's potential for array processing, we investigated I
computation-intensive statistics as a prime application of a high-speed single-user workstation which
use these devices to do the bulk of the computation. Since it is a low-cost commercial device, DSP's
are particularly cost-effective for the proposed application. These processors were introduced in the I
last decade to perform filtering algorithms in real time for a wide variety of applications [HPS 1990].

The DSP architecture consists of a high-speed parallel microprocessor which contains two
specialized units. These are a data arithmetic unit (DAU) for floating point operations and a control
arithmetic unit (CAU) for integer control. The floating point processor performs parallel
multiplication and result accumulation, while the integer processor performs the address pointer
update for the next operation. All of these operations are done concurrently during the instruction
cycle.

DSP circuits achieve their speed advantage by their parallel and pipelined architecture and I
the use of optimized algorithms. The DSP architecture is designed for single instruction cycle
multiply-accumulate (MAC) instruction processing and index updating. A typical DSP instruction
written in pseudo-code is given by:

A[ij = aO = al + BUj]-C[k] Eq.(1.1)

This could alternatively be written using pointer notation,

In the following, we refer to SW as the hardware and software needed for a DSP-based statistical analysis
workstation running in a microcomputer-based environment. I

2

I

*A++ = aO = al + *B++ -*C++ Eq.(1.2)

where A[i], B[j], and C[k] represent data elements and aO and al represent floating point
accumulators. Thus, a single instruction may contain as many as five address references: two
referencing floating point accumulators and three referencing physical memory locations. If the use
of these instructions is maximized in statistical algorithms, a significant speedup can be achieved.

I The specialized architecture enables the DSP to achieve up to a two orders of magnitude
improvement over the conventional numeric coprocessor. However, unlike the numeric coprocessor,
the DSP is not a simple plug-in device that interfaces directly with the main processor and higher
order languages. The use of a DSP in a PC requires a commercially available add-on board and the
development of additional software for interfacing the DSP to the main processor and statistical
applications programs. Transferring this technology to personal computers and to statistical analysis
and prediction problems holds great potential, and one of the main objectives of this study.

1.3 Phase I Research Objectives

The primary objective of the Phase I effort was to evaluate the conceptual feasibility of the
DSP-based statistics workstation. This, in turn, led to the identification of a number of specific
objectives and their corresponding research tasks, as described below.

1.3.1 Algorithm Selection, Evaluation, and Optimization

In this effort, the DSP software development emphasis is on the algorithms that requirt
repetitive calculations or the so-called "computation-intensive statistics", such as bootstrapping, etc.
[Diaconis 1983]. Noreen 11989] has predicted that a major trend in statistical programming packages
will be including these computation-intensive algorithms. Further development emphasis will be on
computations requiring iteration and where global optimization is not possible, such as projection
pursuit regression.

This study focuses on adapting and fine-tuning the basic statistical algorithms for use in DSP
applications, not on developing new high-level algorithms. The statistical computation algorithms will
then be applied to a high-speed, single-user workstation concept. As noted with supercomputer

applications [Harrod 19871, optimization of the low-level algorithms (such as the basic linear algebra
subprograms (BLAS) of LNPACK [Dongarra 1979]) has resulted in greatly improved performance
of many of the high-level routines [Bates 1987]. The effectiveness of this approach with statistical
problems and the DSP was confirmed here as well2.

Emphasis is also placed on selecting the most efficient algorithms for the processor. For
example, many of the algorithms optimized for the fast Fourier transform (FFT) on conventional
processors have concentrated on reducing multiplications at the expense of additions [Blahut 1985].

2 Optimization of the computation-intensive algorithms cannot be taken too lightly. Lucky [1989] noted that
algorithm development accounted for most of the computing speed improvement in the past several decades. Heestimated that 4 orders of improvement have come from device speed and that 7 orders have come from improved
algorithms. The algorithms contributing most have used special symmetries in the data, such as the fast Fourier
transform, Toeplitz matrices, etc.

I3

I
However, with the DSP chips now in use, multiplications have virtually the same overhead as
additions, so algorithm were optimized with this in mind.

13.2 Interface Definition

The statistics workstation will be designed as an extension to the conventional personal
computer, using the DSP as a 'number cruncher. The main processor in the PC will be responsible
for handling program and data management, data display, and support of the user interface.

Since this interface has a major effect on the operational effciency of the workstation, a
working prototype suitable for a feasibility investigation was developed and used for interface design,
algorithm optimization, and expected performance evaluation.

1.33 Performance and Cost Evaluation I
Since a DSP-based computer for statistical analysis is an unconventional concept, its

acceptance will depend on achieving considerable improvement in speed, while keeping the cost low. I
Our objective will be to provide solutions to a relatively wide range of computation-intensive
statistical problems which currently require the use of supercomputers.

In this report, a detailed tradeoff analysis (Section 9) is made to select the best DSP-based
statistics workstation configuration. This selection is based on measured benchmarks taken during
this study. The analysis also presents recommendations for software development, memory sizing, eta•
This will enable a selection of the most promising algorithms to be incorporated in the statistics
workstation.

1.4 Concept Feasibility Questions and Answers

The proposed concept feasibility questions that were posed for the Phase I effort and the
corresponding conclusions are:

1. Can the basic algorithms needed for the statistical analysis and forecasting be modified to
provide a substantial improvement in processing using the DSP hardware? - Our investigation revealed
that the majority of the statistical algorithms could be modified to take advantage of the unique
features of the DSP and thus achieve a substantial improvement in speed.

2. Are there any bottlenecks that could reduce the expected performance of the proposed
approach? - No major bottlenecks were found. However, if the statistical algorithms contained a
large percentage of operations that required integer or conditional operations, then the performance
improvement was much lower.

3. What is the effect of the interface? How can it be improved? - The proposed DSP i
interface was easily implemented through a formal definition procedure. For computation-intensive
statistical computations, the effect of the interface was minimal. A faster data transfer speed through
a 32-bit interface will be available in the next-generation devices.

4I I

I

.. 1.5 Report Outline

The remainder of this report addresses the specific tasks necessary to evaluate the feasibilityI] of a DSP-based statistics workstation.

Section 2 presents an overview of statistical user needs and existing statistical softwareI packages. This section also discusses new trends in statistical techniques.

Section 3 deals with the selection of computationally-intensive statistical analysis techniques.I In this section, we give a brief summary of the statistical algorithms and their feasibility for use on
DSP's. The algorithms which are readily available for PC's and perform adequately in their
commercial software form are disregarded.

The identification of low-level building blocks is presented in Section 4. The statistical
algorithms are broken down into low-level components for effective use in the DSP. These are then
tabulated into a library of subroutines similar to the supercomputer BLAS routines.

Section 5 deals with the proposed statistics workstation design. It presents the design
philosophy, defines objectives, and discusses key components of the workstation. The choice of the
most suitable DSP chip is based on the low-level building block requirements. Due to their favorable
architecture, multi- or parallel processing using DSP chips within the statistics workstation
environment is also considered.

Section 6 discusses the DSP-based software development and explains how the generic DSP
subroutines are coded and inserted into high-level statistical algorithms. The use of a high-level,
portable language for development is advised.

The definition of interface requirements between the PC and DSP is presented in Section 7.
To get the optimal performance from the host processor and DSP, several interfacing schemes are
reviewed. Automated generation of the software interface between the PC host and the DSP using
a software description language (SDL) is found to be useful.

The statistics workstation performance evaluation is in Section 8. The performance of the
DSP-based workstation is compared against the stand-alone PC version through dual software
development. The dual development is simplified through the use of a portable language such as C.

The overall statistics workstation performance/cost evaluation results are presented in Section
9. Cost estimates are then made for a range of workstation configurations.

The final section, Section 10, presents our conclusions and recommendations. The
recommendations for the statistics workstation design are based on the evaluation test results. The
workstation architecture and software support recommendations are briefly described below.

Hardware. The architecture recommendations include selection of DSP type, speed, memory,
hardware interface, and other implementation aspects. One approach to the statistics workstation
would be to provide a complete turnkey system, since few users will be familiar with the DSP
hardware and the internal computer system configuration. Another approach would be to provide

I 5

I
an add-on kit for upgrading an existing PC, although port-compatibility problems could increase the
risk of this approach.

Software. Software support for the statistics workstation is identified on several levels, starting
at the BLAS level and proceeding to the applications level. For each level, software modules must
be coded and optimized. In the feasibility study, several program modules containing computation-
intensive statistical algorithms were coded and tested on a commercially available board. As the
largest speed improvements were found on the algorithms that used the low-level subroutines
effectively, we recommend these for future development.

I
I
I
I
I
I
I
I
I
I
I
I
I

6

I

2 STATISTICAL COMPUTING NEEDS

Since the advent of computers, scientific researchers have desired interactive, high-speed, and
cost effective machines capable of solving complex statistical and forecasting problems. Recent trends
in statistical research have made this desire a high priority.

In the past, supercomputers have often been used to solve the more complicated problems.
However, this approach is not always possible for many researchers due to acquisition cost (starting
at $3,000,000), operational cost (supercomputer time is $2000/hr and up), and scarcity (about 300
supercomputer systems available in the United States) [Goldberg 19881.

Given that the five NSF-sponsored supercomputer centers can provide only limited service
to the academic community, most of the researchers have to use the more easily available,
mainframes, minicomputers, and workstations. However, even the larger minicomputers and
workstations are not always widely available. A 1986 survey of statistics departments at 30 major
Ph.D. granting universities showed that 70% of the statistics departments did not have workstations
and that 53% of the departments lacked graphics terminals [Eddy 1986a]. The same survey also
showed that hardware acquisition had the highest priority but was limited by the available funding.

As nonparametric and computation-intensive statistical techniques gain in popularity, the
demand for an efficient statistics workstation to support these computations will increase. In this
effort we have attempted to develop a low-cost solution to these needs by proposing the development

of a DSP-based statistical analysis workstation. Since this workstation will be used in the existing
statistical computing environment, a short review of the current statistical user needs and existing
statistical computing packages and supporting tools follows.

2.1 Statistical User Needs

We expect that several different groups of users will be interested in conducting computation-
intensive statistical analysis and will need a statistics workstation to support their efforts. The
majority of the initial workstation users will be from those academic, industrial, and government
communities which already have been exposed to computation-intensive techniques.

Although the needs of the user communities differ, they will have a common interest in a low-
cost solution because of the limited budget that is normally available for statistical investigations. The
only area that we cannot address immediately with the statistics workstation concept are those
applications that are memory intensive, requiring more storage than is normally available on a low-
cost, desk-top environment.

University environment. The university environment is more research oriented and requires
a wider range of capabilities than the industrial counterpart. The key university users will include
statisticians and scientific researchers in applied, medical, and social science areas. As mentioned in
Section 1, there is a well-established need for advanced statistical computing capability [Eddy 1986a].

Industrial environment. Many of the industrial applications will be manufacturing oriented and

I 7

...I.. ...

m
will involve quality control or
process optimization computations.
With the current emphasis on
quality, major improvements in
statistical process control (SPC),
statistical quality control (SQC), and
simulation methods will be desired.
Furthermore, many of the SQC L,
applications are computation- ,
intensive because of the large DOW"www i m
number of variables involved which V~ot. dIm
determine the product quality [Love
1988, Lewi 19821. Most of the
process optimization in the past has A*tdc. = I
been performed in an offline batch
mode, often on a daily or weekly
basis. However, performing the m
operations in an offline mode
involves delay. This can lead to Figure 2.1 Online statistical process control.
resource waste if the process I
operates less than optimally between adjustments. Thus, the use of an online approach may
contribute to product quality improvement (see Figure 2.1). Here, the emphasis will be on fast
computation capabilities and on processing significant data, typically obscured by noise, in a real-time,
on-line mode [Electronics 1990]. To be cost-effective, high-speed specialized computers will be
needed for this task.

With these users in mind, as well as other users in the fields of medicine, business, etc., the I
necessary statistical software methods and tools for a desk-top environment can be determined.

2.2 Statistical Software Program Development m
Many statistical programs have been developed for specific applications, often requiring a staff 3

of programmers or at least one person expending a great deal of effort. Because these programs
have been written to perform a specific job, they can be optimized for speed. However, some of the
drawbacks of creating user specific applications include:

"o Each special purpose program requires a new development effort.
"o Special purpose programs can be flexible, but only for those options included. Any

maintenance effort or modifications on the programs will require additional expense.

These are both prime considerations when starting any software project. However, to shorten
the development time and reduce software development cost, existing statistical libraries should be
used whenever possible. This is where an established library such as IMSL or NAG [McCullagh
1983] can be of use. However, before using libraries indiscriminantly, it is important to verify that
the individual modules are compatible, and well understood. Modules should be fully debugged and
test data made available. Corrupt random number generators are an example of poorly designed
routines that have been included in some libraries [Lewis 1989].

8

I

As an example of a widely used and heavily debugged library, IMSL offers a wide range of
mathematical and statistical functions (over 500 FORTRAN subroutines). The basic features of the
IMSL STA/PC-LIBRARY are listed in statistics groupings 1 through 17 in the next section.

The IMSL subroutines are also common to many of the canned statistical packages. In this
regard, the ease of use and convenience of the latter programs makes them preferred over user-
specific programs whenever they are available.

2.3 Conventional Statistical Analysis Packages

Several hundred statistical computer program packages are available for the PC environment.
The majority of these programs are similar in their fundamental capabilities (and algorithms) and
cover almost every statistical evaluation need. However, many of these programs are not suitable for
the computation-intensive tasks because of their speed and available hardware, not to mention that
few have the algorithms required. Thus, it will be important to offer in a statistics workstation those
features which are not now available in the PC environment but are needed for more complex
analyses.

Since detailed reviews of statistical programs are already available [Woodward 1988, Fridlund
1990], extensive reviews of the available programs were not attempted. The available reviews,
however, helped in determining the features to be used in the proposed statistics workstation. Most
of the significant packages contain at least the following computational capabilities (not including the
file handling, graphics, and other features). Of those features marked with an asterisk (*), we have
done limited prototyping for feasibility studies. Some of these computations will often be used in a
larger context (such as bootstrapping).

* 1. Basic or descriptive statistics: mean, variance, etc.
* 2. Regression

* 3. Correlation
4. Analysis of variance (ANOVA)
5. Categorical and discrete data analysis
6. Nonparametric statistics
7. Tests of goodness of fit, significance, and randomness* 8. Time series analysis and forecasting

: 9. Covariance structures and factor analysis
10. Discriminant analysis

* 11. Cluster analysis
* 12. Survival analysis, life testing, and reliability

13. Multidimensional scaling
14. Density and hazard estimation

15. Probability distributions function and inverses
16. Random number generator
17. Mathematical operations

a. Linear systems
b. Eigensystem analysis
c. Interpolation, approximation

* d. Integration, differentiation

9

I
e. Differential equations
f. Transforms
g. Nonlinear equations

* h. Optimization
iL Basic matrix, vector operations

* 1& Exploratory data analysis.

The majority of the large statistical software suppliers offered a wide range of algorithms for U
each heading. Lacking in their products, however, for a variety of reasons, were the algorithms that
stressed computation-intensive methods and Bayesian methods.

2.3.1 Types of Statistical Packages

There are two major classes of statistical packages: procedure-based and application language- 3
based. The procedure-based packages provide a wide selection of different statistical routines, which
may be selected from a menu. The application language-based packages, on the other hand, provide
a highly fle1ible language which permits the user to specify more complex computation procedures. I
This classification is not always clear cut and a mix of both features is available in many of thestatistical program packages.

Currently, most of the procedure-based statistical program packages are coded in the
FORTRAN language, while the more recent language-based systems use the C language.

Pmocedure-based Packages. Typical examples of commercially available procedure-based I
statistical programs include SAS [Jaffe 1989], BDMP [BDMP 1985], Minitab [Ryan 1985], SPSS,
Statgraphics, and Systat [Fridlund 1990]. 3

There are several advantages of using procedure-based packages.

"o Many have been proven reliable from their origin as mainframe packages to their present I
form on PC's.

"o Based on their longevity, many also have a large installed user base.
"o Procedure based packages feature fast, compiled modules.
"o The PC version packages typically feature model setup and are often menu-oriented.
"o Most are easy to learn.

There are also disadvantages of procedure-based packages.

"o They are not as flexible as a language-based package because computations are limited to the
routines available.

"o Procedure-based packages are seldom highly interactive (this is traceable to mainframe
origins).

"o They often have limited graphics capabilities (also traceable to mainframe origins).

The latter two disadvantages are sure to evolve with time as programs become more m
interactive in nature. Flexibility has improved with the addition of user-written BASIC syntax
routines for Systat and APL for Statgraphics [Fridlund 1990].

10 I
I

j An important point to consider is that speed can be substantially degraded if data is kept on
disk (Systat and SPSS) rather than memory (Minitab and Statgraphics). The principal reason for
using disk access is for handling large amounts of data. If the calculations are not time-demanding,Idisk access is preferred to save memory space. However, if the data sets are small with many
computations involved (typical of bootstrapping, etc.) disk access will slow computations down byorders of magnitude.

Language-based Packages. The language-based statistical program packages use an
application-oriented higher level language to control data and processing operation selection. A
typical example of this approach is the S language.

Statistical programs which use a higher
level language have many advantages over the MACROS FUNCTIoNS
conventional procedure-based programs. They simple user Input
are particularly well suited for interactive
applications, because they permit easy
generation of macros for repetitive operations optimized library
(see Figure 2.2). Furthermore, language-based
packages have several advantages:

Integration flexible
"o They have great flexibility in that the

output from one module can be used as
an input to another module. compute fast

"o They are user extendable. The S
language, in particular, has the
capability to add user developed Figure 2.2 Progression in building a language
modules. Since these modules can be based application. Alongside is shown the
controlled by the language control importance of macro-driven and compiled
statements, overhead associated with the programs.
custom development of programs is
reduced.

"o The user has control over many more of the details, methods, and assumptions used in analgorithm. Several reviewers have noted that it is not too wise to put too much trust in a
procedure-based package due to the poor methods and assumptions often used [Dallal 1988,

Searle 1989].

There are also disadvantages to using the language based programs. Most of the statistical
languages are relatively complex due to the large number of commands and options available and
poor user interface. However, once the user becomes familiar with the language, much greater
efficiency can be attained.

The distinction between the language and procedure-based programs is not as apparent as
it once was, primarily because the makers of procedure-based packages have included extensions for
user-modifiable programs.

11

I
2.3.2 Representative Examples

Analysis of the existing statistical programs can provide guidance for the statistics workstation
development. Appendix G provides an overview of those features which are currently included in
standard packages and which should be included in the future packages. To ease the learning of the
statistics workstation environment, those familiar concepts which are widely used in statistical analysis
should also be incorporated.

2.4 Additional Tools

Besides the programming languages and statistics packages required by the users, additional U
tools for data base management (such as spreadsheets) and more complex mathematics are often
needed. These are also listed in Appendix G.

2.5 Incorporation of Statistical Tools into the Workstation Environment

The concepts discussed in this section were used in planning the proposed low-cost, high-
speed statistics workstation. In addition to the computational methods involved, complementary tools I
such as the artificial intelligence/expert system used in Statistical NavigatorTm may be valuable inguiding the user through the available statistical algorithms [Brent 1989].

Based on the current user needs, the long term objective of the project will be to develop a
statistics workstation capable of providing the following:

"o Fast and interactive environment for lengthy problems and the management of large data I
files.

"o Excellent color graphics display and windowing capabilities to display the data, the analysis
results, and to stimulate intuition.I

"o User friendly environment to encourage the widest use of statistical analysis and forecasting
techniques by researchers from many different disciplines. 3
The algorithms and concepts that are promising for DSP use will be discussed in the next

section. The emphasis will be placed on those applications that require large computational effort.

I
I
I
I

12

I

3 POTENTIAL STATISTICAL APPLICATIONS

The statistical applications that require high computation rates are numerous. Even the
applications that seem computationally simple at first can become slowed down if more parameters
are added (factorial growth) or if larger data sets are created. It is the purpose of this section to
isolate the computationally-intensive applications. Wherever possible, we have identified similar
applications in signal processing where DSP's have been used in the past.

3.1 Analysis of Statistical Algorithms and Techniques

We first present a brief discussion of the major groups of algorithms used in statistical
analyses. In this section, emphasis is placed on computationally intensive methods and their special
computing requirements.

3.1.1 Basic and Descriptive Statistics

Basic statistics such as mean and variance normally do not require much computation effort.
However, in those instances where population resampling is attempted (such as bootstrapping for
standard error estimation or as a Monte Carlo analysis) the load will increase by the number of
simulations attempted. For this reason, it is important that these algorithms be optimized for speed.

3.1.2 Regression

Regression methods typically require matrix manipulations. For least squares regression of
linear data sets, the calculation of pseudo-inverses is necessary. There are many algorithms for
dealing with this task including singular value decomposition, SWEEP operator, etc. [Maindonald
1984, Kennedy 1980]. These algorithms do not typically require inordinate amounts of computer time
by today's standards. However, when larger data sets and resampling techniques [Robinson 1987] are
used, the computation time may become prohibitive.

Regression analysis involves heavy use of sum of squares. Nonlinear transformations in
regression, such as exponential or logarithmic, involves evaluation of a power series. For nonlinear
regression problems, iteration may be required for finding global minimum. Therefore, for
multidimensional data sets or those with many local minimum, the computation time can become
lengthy. Efficient software for multiple regression requires optimization of the computing sequence
and the indexing of variables.

Projection pursuit regression [Friedman 1974, Jones 1987] is a nonlinear exploratory data
analysis technique that typically may include many Gauss-Seidel iterations to arrive at an optimum
condition [Thisted 19881. Bootstrapping on top of projection pursuit will makes it even more
computationally intensive [Efron 1986].

13

I
3.1.3 Correlation

Calculation of correlation and covariance becomes computationally intensive if techniques
such as bootstrapping are applied. Diaconis [1983] demonstrates the application of bootstrapping to
computing standard errors on a correlation coefficient and discusses the increase in computation time.

The computation of bivariate correlation is similar to the computation of convolution in
electronic signal analysis. Efficient DSP algorithms for computing convolution exist and can be
modified to handle bivariate correlation.

3.1.4 Analysis of Variance I
Analysis of variance (ANOVA) requires sum and sum-of-squares evaluations. Ordinarily, this

method presents little computational load to the PC. However, as the number of factors increase,
the computational load will increase. Applying randomization tests to ANOVA will also increase the
computational load [Noreen 19891. In these cases, DSP's are ideal for calculating the sums and sum-
of-squares evaluation within the ANOVA algorithm.

3.1.5 Categorical and Discrete Data Analysis

Categorical and discrete data analysis [Santner 1989] are often adequately managed by existing
computers. In general, ordinal and nominal data (qualitative) is better suited for integer processors,
whereas ratio and interval data (quantitative) is suited for floating point processors such as a DSP.
As an example of the latter case, combinatorial problems in discrete data analysis may require discrete
Fourier transforms for computing distributions [Thisted 1988].

3.1.6 Nonparametric Statistics

If the sampled population is not normal or if there is concern about "outlier" observations,
then nonparametric techniques must be used. The conventional nonparametric procedures include
the well-known sign tests and rank procedures. However, many of the these tests have been
introduced before the advent of computers and were designed to simplify arduous hand calculations.
More recently, a number of new nonparametric statistical techniques, such as shuffling, have been
introduced which require substantial computer support and are often referred to as nonparametric
computation-intensive statistical methods. These techniques will be more suitable for the statistics
workstation application.

3.1.7 Tests of Goodness of Fit, Significance, and Randomness

Even though these tests may look formidable in their use of integrals and series
approximations, they are not considered computationally intensive. For example, when running a
simulation experiment, the significance testing will only be done once at the end of the trial. The I
computer time involved in calculating the test will be negligible compared to that involved in thesimulation.

I
14

I

3.1.8 Time Series and Forecasting

Time series analysis includes autocorrelation, moving averages, cross correlation, and spectral
analysis. Smoothing techniques used in statistical forecasting are similar to techniques used for
electronic signal filtering in signal processing applications. These operations are typically rich in
floating point array calculations.

Since DSP's were originally developed for signal processing applications, highly efficient
algorithms already are available as part of the standard DSP libraries provided by the manufacturers
of these devices. A number of statistical techniques have direct counterparts in signal processing.
Once this relationship is recognized, DSP algorithms can be used either directly or with minor
modifications. Two such mappings are illustrated below.

I 0 AR (autoregression) - IIR (infinite impulse response filter)
0 MA (moving average) - FIR (finite impulse response filter)

I Adaptive filtering techniques are used to determine the optimum sets of weights to be used
in forecasting models. The specific operations involve autoregression, moving average, and
autoregressive moving average (ARMA). Less work has been done on adapting these operations to
DSP chips. One promising area that is computationally intensive is bootstrapping of an AR model.
This technique is used to obtain variability of coefficients when the signal is obscured by iid noise.

3 An adaptive signal processing algorithm often used for forecasting is Kalman filtering. In this
method, the emphasis is on prediction as more observations are obtained [Gelb 1974]. The Kalman
filter algorithm involves computation of means and covariance matrices. Since the DSP architectureIsupports efficient use of these operations, the DSP can be used for a wide range of different Kalman
filtering algorithms [Alexander 19861.

3 3.1.9 Covariance Structures and Factor Analysis

Factor analysis in general requires numerical linear algebra. Finding the principal components
of a multivariate data set is one method of investigating the covariance structure. This requires sum
of squares and matrix operations which can become computationally intensive when placed in a larger
loop such as is required for bootstrapping.

I 3.1.10 Discriminant Analysis

Fisher's linear discriminant is one example of discriminant analysis. A probabilistic neural net
which has foundations in discriminant analysis and Bayesian decision making has recently been
proposed [Specht 19901. Neural networks often rely on arithmetic operations between all the
elements in an array (connectionist model) which can require more processing power than is available
on a typical PC.

3.1.11 Cluster Analysis

Cluster analysis techniques such as the K-means algorithm [Hartigan 1985] may require
computation of Euclidean distances to distinguish sets of data. Bootstrapping to denote measures
of uncertainty in the classification can lead to very long computation times [Jain 1987]. Clustering

15

I
techniques are often related to image processing applications such as pattern recognition,
classification, and scene analysis [Duda 1973]. Recently, there has been much effort in applying I
DSP's to such applications [Fuccio 1988].

3.1.12 Survival Analysis, Ufe Testing, and Reliability i
"The Kaplan-Meier estimate is an example of a non-parametric maximum likelihood estimator

of reliability or survival. When used in the context of bootstrapping or factorial simulation the
computation times can become lengthy [Efron 1986, Grier 1988].

3.1.13 Multidimensional Scaling I
This is a technique for reducing dimensionality and graphically displaying a complicated data

set. Array type floating point calculations are needed here, making it particularly suitable for DSP I
applications if fast interactive display is needed.

3.1.14 Density, Hazard, and Nonlinear Estimation

The computation complexity of the kernel method for density estimation can be improved if
techniques such as the FFT are used [Silverman 19861. Reducing the standard error through cross-
validation fitting adds another layer to the complexity.

3.1.15 Probability Distribution Function and Inverses

- and -

3.1.16 Random Number Generator i
The above two categories often go hand in hand. For bootstrapping and Monte Carlo

simulation, high-quality pseudo-random number generators [Gleason 19881 and accurate probability
density function inverses are important.

For Bayesian computations, integration in multiple dimensions is most effectively handled by I
Monte Carlo techniques. In the majority of cases, the computation rate will be limited by the fast
production of random numbers [Berger 1985]. Therefore, it is important to speed this computation
as much as possible.

3.1.17 Mathematical Operations

The following is a list of supporting mathematical techniques for statistical computations.

a. Linear systems
b. Eigensystem analysis
c. Basic matrix, vector operations

The LINPACK class of problems falls under the above three categories. In many of these i
algorithms, accuracy in calculations is of prime importance.

16

it Interpolation, approximation
e. Integration, differentiation.

Efficient DSP-based algorithms can be developed for numerical integration and for differential
equation solution. The DSP can also be efficiently used in Monte Carlo integration schemes. The
numerical integration will be particularly important for Bayesian computations.

I Jf Differential equations.
g. Transforms

I Markov analysis includes both discrete and continuous applications. The discrete case
requires matrix multiplication, whereas the continuous case requires solution of differential equations.
Both of these computations can be efficiently implemented using the DSP.

I. Nonlinear equations
SiL Optimization

Optimization will arise in many of the iterative techniques, including projection pursuit,
maximum likelihood, and least-absolute-deviations regression.

3.1.18 Exploratory Data Analysis.

The objective of exploratory data anal)yes is to extract as much information as possible from
a relatively limited data set and help the user gain insight by presenting the information graphically
[Cleveland 1988, Young 19891. This typically involves techniques such as rotations and data
smoothing.

As an example, the DSP is well suited for data smoothing. Most of the needed algorithms
are well known and have been optimized for DSP use. Techniques are available which permit
expressing interpolation splines as digital filtering algorithms [Schaffner 19811. Since this approach
reduces the need for division, an efficient coding of a spline calculation is feasible. The high speed
smoothing capability will permit many of the filtering operations to be performed in a real time,
interactive environment.

3.2 Computation-Intensive Algorithms

In the last ten years, the emphasis in statistical research has shifted to computationally-
intensive techniques and, in particular, to the development of efficient algorithms. These techniques
include nonparametric estimation techniques, such as bootstrapping and jackknifing [Efron 1983].
Other time consuming computation techniques include simulation experiments with various
combinatorial testing procedures, projection-pursuit regression using Gauss-Seidel iteration [Thisted
1988], and numerical quadrature for multivariate integrals. Major emphasis has also been placed on
the use of computers for exploratory data analysis and using computer graphics in multivariate data
analysis (such as MacSpinm). The supporting computations required in these analysis include
interpolation splines, polynomial evaluation, least-squares data fitting, solution of nonlinear equations,
optimization, random number generation, etc.

1
17

I
The statistical analysis methods selected for a detailed investigation include statistical

techniques used with bootstrapping (such as correlation, regression, and time-series prediction) and I
also iterative techniques (such as projection pursuit).

3.2.1 Bootstrapping and Resampling

Bootstrapping [Efron 1982] is a s
resampling scheme which allows estimation of ShUfN MoftS rlob p
variance and permits computation of confidence 0
intervals. Bootstrapping makes no specific 0

0 0distribution assumptions and can be likened to 0
a simulation procedure that generates data 0 0
samples from the given empirical distribution. 0 0

It is useful in those situations where a limited o o o I
amount of data is available or in simulation 0 0 0
studies where it takes longer to generate output 0 0 0
from the simulation program than to resample 0 0 0

S0 0 0 m[Lewis 19891. 0-- 0I
Jackknifing and cross-validation are I

related techniques used to reduce bias and
estimate variability and calculating confidence Figure 3.1 Resampling techniques using random
intervals. Confidence intervals, in particular, number generation.
have been shown to require many bootstrap
samples (>1000), making these techniques even more computation-intensive [Efron 19901.

In addition to these techniques, shuffling is often used for testing randomness of populations,
while Monte Carlo simulation are often used to derive statistics from an assumed distribution.

Figure 3.1 schematically describes several of the techniques. Open and closed circles I
represent two distinct data populations. Shuffle techniques create a randomized test set by mixing
the two populations together. A Monte Carlo test randomly draws samples from the probability
distributions of the two populations. Bootstrapping creates an artificial sample from a single I
population by randomly choosing points with replacement.

3.2.2 Projection Pursuit (PP) I
Projection pursuit regression (PPR) is a form of multiple nonlinear regression which is used

for constructing a model for a response variable as a nonlinear function of a collection of predictors I
[Thistcd 1988]. The projection pursuit methods involve both smoothing and optimization and can
be a?.p!:'_ to regression and clustering [Friedman 1974].

As applied to regression, smoothing is normally accomplished using splines, with the
optimization step requiring nonlinear Gauss-Seidel iterations. A PPR computation may involve one
complex iteration within another iteration. Each of the iterations may, in turn, involve multivariate
functions. This can lead to very long computation times.

Since projection pursuit is mainly used for exploration of regression, clustering, and density

18 I
I

estimation, a very high computational accuracy is not needed. Therefore, the projection pursuit
methods appear ideal for DSP use.

3.2.3 Bayesian Analysis

Bayesian decision theory requires the specification of a loss function. In this case the
optimum decision is the one which minimizes the expectation of this loss. Computation of this
expectation involves obtaining the posterior distribution based on current observations.

Many of the Bayesian analysis applications require complex multivariate integrations. In low-
dimensions, integration techniques such as Simpson's rule and Gaussian quadrature can be used.
Multivariate integration at high dimensions should use Monte Carlo based numerical integration
techniques [Press 1989]. It is important to note that integrating through higher dimensions results
in increasingly slower convergence times [Plant 19891.

3.2.4 Iterative Techniques

Iterative techniques play a major role in computation-intensive statistical analyses. Many
illustrative examples were presented earlier, such as the PPR, where we found nested iterations. The
use of iterative techniques are routinely required when nonlinear problems in statistics are
encountered.

Two iterative techniques considered include simultaneous over relaxation (SOR) and iterative
matrix pseudo-inversion (MacKay's algorithm). SOR finds applications in solutions of differential
equations, while MacKay's algorithm [MacKay 1981] is a variation on the iterative solution to finding3 a pseudo-inverse to a matrix.

Most of the iterative matrix inversion routines require a fairly large number of iterations
before converging [Phipps 1986]. Although they are slow, they offer advantages of increased
accuracy, which is particularly important in DSP applications where only single precision capability
is currently available.

I 3.3 Objectives for Algorithm Development and Evaluation

As the preceding applications may require much computer time, there is a need to handle
these computations in a cost-effective way. Therefore, a number of the above techniques and
algorithms were selected to guide the conceptual design and provide a basis for the feasibility
evaluation of the proposed workstation.

We cannot expect that all of the developed algorithms will exhibit a substantial improvement
in the speed. One of the sub-tasks was to identify computation bottleneck areas and to identify other
promising solutions using modified algorithms or additional hardware.

Emphasis was also placed on commonality and reusability aspects of the algorithms to reduce
memory requirements and complexity. Since there is much commonality between the statistical
analysis and forecasting techniques and modern signal processing, the algorithm optimization process
builds upon the existing knowledge.

19

Accuracy of computation results will depend not only on the computation mode (single or
double precision), but also on the specific algorithm selected. Optimal results are obtained by a
careful balance of algorithms and computation mode. Unfortunately, the complexity of the algorithms
seldom permits a direct estimation of computation accuracy. In this situation, subjective evaluation
of the results may be necessary.

20

4 BASIC LOW-LEVEL STATISTICAL SUBROUTINES

Most computation-intensive statistical algorithms can be subdivided into a hierarchy of levels.
An example of the hierarchy for one application is shown in Figure 4.1. The hierarchy is arranged
such that the amount of time that the algorithm spends in any one level increases from top to bottom.
The lowest level consists mainly of array computations that are performed many times. These are
denoted by the terms BLAS and BSAS.

4.1 Low-level Algorithms

To achieve the largest possible speedup
in any application, the lowest level algorithms oeono t
need to be optimized. We will consider this LEVcf2

optimization from a DSP perspective. 1 T

4.1.1 Low-level Structure basic bic

LEEL1 anla"I algebra
To exploit the DSP's features of s sutm

pipelining and parallel processing efficiently, the
proper matching of computation algorithms to
the hardware structure is required. This
matching is a very difficult task to accomplish in Figure 4.1 Statistical algorithm hierarchy
a higher level language alone because these
languages seldom provide the hardware dependent features.

One approach, which has been used with success in supercomputer programming, is to use
a multilevel structure in developing the software modules. The lowest level of these modules are
developed to include all of the processor dependent details required to achieve the expected high
performance. This implies that the lowest level must be programmed in a machine dependent
language.

An example will be used to illustrate this need. In a DSP the most efficient operation is the
multiply-accumulate (MAC) instruction illustrated in Equations 1.1 and 1.2. In addition to the
multiplication and addition, this instruction also provides the capability to advance index registers.
The presently available higher level languages do not have the capability to express this operation
in a form that could be easily optimized by the compiler. The C language [Kernighan 19781 comes
close (see Equation 4.1) but does not allow variable increments on the pointer indexing, e.g. *A+ +
means unary post-increment to the next element of the array, whereas the DSP is capable of larger
offsets than 1.

*A++ = al + *B++ - *C++; Eq.(4.1)

Thus by developing the lower level modules in a machine dependent language, we can
guarantee that the performance at this level will not be compromised. To migrate to a different DSP,

21

I
only these lowest levels need to be changed.

4.1.2 Baskc Statistical Analysis Subroutines - BSAS

During the development of the low-level algorithms, emphasis was placed on using the most I
efficient parallel operations, such as the MAC. Although many of the statistical algorithms for DSP
applications will have to be modified or developed anew, careful examination of the digital signal
processing algorithms for possible adaptation to statistical problems will save development time.

Since statistical procedures involve matrix multiplications, sum of squares, and other similar
floating point operations, we can expect that the use of DSP's will accelerate these computations. I
As an example, several basic low-level building blocks can be written in pseudo-code to highlight their
DSP use (compare to Equation (1.1)):

"o Summation of series:
s[0] = 0; s[k] = s[k-1] + x[k]; I i k s n

"o Summation of squares:
s[0] = 0; s[k] = s[k-11 + x[k] 1 5 k s n

By definition, the basic building blocks will be those level I operations that are common to
most statistical analysis applications. This includes basic linear algebra operations, as well as
operations that are unique to statistical analyses. The linear algebra operations consist of vector and
matrix manipulations, polynomial evaluation, and data transformation. The statistical operations
include computation of mean and variance.

The linear algebra subroutines used in this study were modeled after the Basic Linear Algebra
Subroutines (BLAS), which consist of the commonly used vector operations in linear algebra (see
Figure 4.2). A detailed description of these subroutines is presented in the LINPACK user's guide
[Dongarra 1979J.

SCOPY Copies array X onto Y. I
SSWAP Swaps array X with array Y.
SSCAL Scales array X by floating point value A.
SAXPY Multiply array X by constant and add to Y, store in Y. I
SDOT Inner product of X and Y.
SNRM2 Norm of X.
SASUM Absolute value norm of X. I
ISAMAX Returns index of maximum (i.e. Mode).
SROTG Converts vector to Givens sine and cosine projections.
SROT Givens rotation.

Figure 4.2 BLAS routines (single-precision). I

The Basic Statistical Analysis Subroutines (BSAS) were designed using a similar approach (see

22 I
I

Figure 4.3). The identification and optimization of these basic building blocks is necessary to achieve
high computing speed, as many recent studies have shown [Harrod 1987, Bates 1987].

4.1.3 Implementation Approach

A different statistical algorithm selection and optimization strategy is required for the DSP-
based workstation given that the processor can perform a multiply-accumulate (MAC) operation in
one instruction cycle time. Most of the previous optimization criteria were based on minimization
of multiplications at the expense of extra additions. Thus, the new optimization criteria favors MAC
operation and concurrent address updates to minimize the cycle time of instruction cycles needed to
perform a specific task.

The algorithm selection should consider the available DSP operations, loop control, and
automatic memory pointer indexing. In Appendix A, we show how building blocks such as summation
of series, summation of squares, polynomial evaluation, moving averages, and exponential smoothing
are related to the available DSP instructions and are used to build the BLAS and BSAS library.

The basic building blocks may be used to perform compound operations. For example, matrix
multiplication is a compound operation using the inner product as one of the basic building blocks
together in a multiple loop control.

More recently, extensions to the BLAS have been proposed. These include the BLAS2
[Dongarra 1984] extensions:

o Matrix x Vector Update y -y ± Ax
0 Vector x Matrix Update xT - iT ± .TA
o Rank 1 Update A - A ± yxT

o Triangular Solver x - T'x

I An even more recent addition, BLAS3 [Harrod 1987] adds the following operations:

o Rank k Update A ± BC
o Matrix Transpose x Matrix A ±EC

I where AeR"', BERmxk, CER"x, EERkxi, TeR", xel, yeRo.

While the original version contained only the basic linear operations, the later additions
extended these to vector x matrix and matrix x matrix operations. In each of these cases a
substantial performance improvement was noted. All of these improvements were due to the speciaI
hardware features available in the processor. The greatest improvements, however, were achieved

i at the lowest level.

4.2 Grouping of Low-level Routines

I The lowest level routines can be grouped according to their application. Where similarities
exist to operations in the library available for our test system (AT&T DSP32 hardware and software),I these are duly noted.

23

I
I

ABSDEV Returns the sum of absolute deviations of the elements of array X from value A.
ADDCPY Adds a scalar to the elements of an army before copying to another.
ADDSCAL Scales a vector and adds a translation. I
ADDSCALCPY Scales and translates a vector before copying to another.
ADDVEC Adds two floating point vectors.
CDF Computes the cumulative distribution function of array.
CENTER Adds a floating point scalar to the elements of an array. I
CSUM Calculates the cumulative sum of an array.
CSUMSQ Calculates the cumulative sum of a product of a value squared and another value.
DIST Calculates the square of the Euclidean distance between two vectors.
EXPSM Filters an input array using an exponential smoothing algorithm.
FILL Creates an array of floating point values based on a starting value and a step size.
FLOATA Converts an array of integer values to an array of floating point numbers.
HEAP Does an in-place heap sort in ascending order on the floating point array SX.
HISTOG Bins values according to their floating point magnitude (floating point).
HORN Evaluates a polynomial expression according to Homer's algorithm.
INDEX Returns an indexing array in ascending order.
INTA Converts an array of floating point values to an array of integer numbers. l
LIMIT Clamps the input value to the upper or lower limit if x does not fall within its range.

MAC Perform a multiply-accumulate on two vectors.
MATMULT Multiplies two matrices together and returns the result.
MATMULTI Multiplies a matrix with a transpose of a matrix.
MATMULT2 Multiplies transpose of a matrix by a matrix.
MATTMAT Multiplies a matrix by its transpose.
MATMATT Multiplies i matrix by its transpose in the reverse order.
MATVEC Multiplies a matrix by a vector.
MAXA Finds the maximum value in array.
MAXIND Finds the index of an array, with maximum value.
MEAN Calculates the average value of an array by using a two pass algorithm.
MEDIAN Returns the midpoint index of an array.
MINA Finds the minimum value of an array.
MININD Finds the index of an array with the minimum value.
MINMAX Finds the minimum and maximum values within a floating point array. I
MOMENT Calculates the third and fourth moments of a centered array.

PROD Returns the cumulative product of an array.
QABS Returns the absolute value of a single argument.
QABSA Converts all elements in array to their floating point values.
QMAX Returns the maximum of two floating point numbers.
QMIN Returns the minimum of two floating point numbers.
RANK Sorts the indices according to their rank.
SCALCPY Multiplies the input array by a floating point scalar and then copies to another.
SIGN Transfers the sign of X to Y and returns it.
SIGNA Transfers the sign of values in the X array to Y array and then copies to the output array.
SSQR Calculates the sum of squares of a vector's components. I
SUBVEC Subtracts two floating point vectors.
SUMUNTIL Sums an array of numbers, returning the index where the sum exceeds the set value.
TRANSP Returns the transpose of a matrix.
UPDATPROD Accumulates the product of elements in the X and Z arrays in the Y array. I
UPDATSQR Accumulates the square of the elements in the X array in the Y array.
UPDATSUM Accumulates the elements in the Y array in the Y array.
VECMAT Multiplies a matrix by a vector.
WDOT Performs the weighted dot (inner) product between two vectors.

Figure 4.3 BSAS routines. I
24

I

I
4.2.1 Vector Operations

IMost of the standard vector operations are easy to compute in the DSP. The
autoincrementing capability permits very efficient vector addition, subtraction, and multiplication (see
e.g. SAXPY and ADDVEC in Appendix A). The same features also permit the development of
efficient operations on matrices and other highly regular data structures.

4.2.2 Vector/Matrix and Matrix Operations

Matrix operations can be considered two dimensional extensions of the basic vector
operations. However, the matrix algorithms are more complex, mainly due to the added indexing
computation requirements. Since these operations are often found in the inner iterative loops of
statistical computations, optimization of these operations is highly desirable.

The low level operations are the basic matrix operations such as addition and multiplication.
One basic algorithm included in the AT&T DSP support library is MAIMUL, which multiplies two
matrices and places the results in the third. To work with the available processor, slight modifications

I were made to that code (see MATMULT in Appendix A).

Higher level operations include the more complex matrix operations, such as matrix inversion.
The matrix inversion routine included with the AT&T library (MATINV) uses Gaussian elimination,
which is not as flexible a technique as others available (e.g. singular value decomposition). In some
cases, due to the limited accuracy of the DSP, iterative matrix inversion techniques may be needed.

Note that a possible solution to further speed improvement would be to develop a more
complex arithmetic unit in the processor, capable of handling higher dimension problems. In
particular, some of the more recent graphics processors have highly efficient architectures for
handling the two-dimensional graphics display.

4.2.3 Polynomial Evaluation

SIn the simplest form polynomial evaluation can be represented as Homer's algorithm (see
HORN in Appendix A):

SP[O] = a[n]; P[k] = a[n-kl + x.P[k-1]; 1 :k n

Most of the DSP-based polynomial evaluation algorithms use variations of Homer's method.
The development of DSP algorithms for polynomial evaluation presents some unique problems. Due
to the pipelining effects in the DSP, optimization of the polynomial evaluation algorithm requires
folding of some of the operations. Using this approach, execution time can be reduced by as much
as a factor of two.

An efficient subroutine for finding coefficients of the product of polynomials is also possible.
The same approach can be extended to complex polynomial evaluation. Most of the polynomial root
finding algorithms are iterative and the single precision limitation of the present DSP's may limit

general application. The same comments apply to finding the coefficients of a reciprocal of an array
and the coefficients of a polynomial from roots.

25

I
4.2.4 Random Number Routines

Two pseudo-random number generators are supplied with the AT&T DSP library. The
generator for finding a uniform number is adequate, but has a short cycle time (see Appendix B).
However, the generator for obtaining a variate from a normal population is based on the crude
technique of summing uniform variates. Better techniques such as the Box-Muller method can be
adapted for this [Bratley 1987]. Other random number distributions needed for statistical applications
include exponential, Poisson, binomial, geometric, gamma, and beta.

Since these computations are modular, the use of a dedicated DSP as a random number
generator could be envisioned for many simulation or sampling problems.

4.2.5 Signal Processing and Filtering

The DSP was originally designed for signal processing and filtering applications. Spectral
analysis and the other techniques often use Fourier transforms. The DSP's themselves are often
optimized specifically for FFT applications. Many of the current chips do a multiplication of sum and I
difference ("butterfly" operation in the FFT) in a single instruction.

Optimum DSP FFT algorithms are available. The DSP32C can compute a 4096-point,
complex FFT in 20.4 ms [AT&T 1988]. Typical optimized FFT code for a 20 MHz 386-type PC will
take 50 times as long [MATLABTm Version 3.51'.

In addition to the FFT algorithms, there are other filtering algorithms well suited to the DSP. I
Erponential smoothing. An example of DSP coding for an exponential smoothing algorithm

is shown below (see EXPSM in Appendix A):

o F[t+I] = a. x[tl + (I-a). F~tt

Moving averages. The use of moving averages is another example of filtering. An illustration
of a moving average (3x3 case) is shown below: 3

o M[tJ = a[-21, x[t-21 + a[-1]-x[t-1J + a[01.x[t] + a(ll-x[t+11 + a[21. x[t+21

Several of these filtering operations are available in the AT&T library. I
4.2.6 Statistical Operations

Sum of squares and cumulative sum are examples of basic statistical operations (see SSQR,
CSUM, and MEAN in Appendix A). These operations can be very efficiently achieved in a DSP.

Stratified sampling FFT computations are often used to reduce spurious peaks and will take longer to perform
[Kay 19881. I

26

I

4.2.7 Math Operations

Mathematical operations other than addition and multiplication cannot be performed in a
single instruction cycle and require a series of elementary operations. However, many of the basic
mathematical operations, such as square root and absolute value (see QABS in Appendix A), can be
optimized for speed within the DSP. A tradeoff in accuracy can often be made to obtain fewer
instructions"

4.2.8 Sort Operations

Although the DSP does not support fast comparison operations, sorting of data sets can be
applied efficiently within the DSP (see HEAP in Appendix A). As these do not require
multiplications or additions, the speed advantage will typically not be as large as for other operations.

4.2.9 Scaling Operations

Scaling of data sets and finding extrema can be handled efficiently within the DSP (see for
example SCALCPY, SSCAL, and MINMAX in Appendix A). Some of these operations are very
similar to the vector operations mentioned earlier but are used more often in the context of graphing
than linear algebra.

4.3 Intermediate Level Algorithms

The intermediate level (level 2) includes algorithms for the special functions needed in
statistical computations, such as covariance, correlation, multivariable regression analysis, maximum
likelihood estimation, spectral analysis, smoothing, adaptive filtering, and forecasting. These
operations routinely use the basic building blocks (BLAS and BSAS) and therefore can be optimized
for DSP use by substituting the low-level routines where necessary.

4.4 Prototyped Examples

Several of the computation-intensive high-level statistical algorithms were coded for use on
the DSP during this effort. We do not intend to give complete descriptions of the algorithms but to
demonstrate how the low-level routines are inserted and what changes need to be made in the overall
structure of the code.

The Phase I statistics workstation feasibility effort examined several prototyping applications.
These involved a representative sample from several of the areas of computation-intensive statistics.
The samples chosen for evaluation were :

1. Correlation coefficient (bootstrapped).
2. Multiple linear regression using SVD (bootstrapped).
3. Autoregressive model (bootstrapped).

For example, there are several square root functions available in the AT&T library, these include sqrtfO and
sqrtqO where the extensions 'f and 'q' indicate fast (accurate) and quick (less accurate).

27

4. ID and 2D projection pursuit.
5. Markov modeling.
6. Iterative techniques (MacKay's and SOR).
7. Density estimation.
8. Survival analysis (Kaplan-Meier estimate).
9. K-means clustering (bootstrapped).
10. Bayesian bootstrap (integration by Simpson's rule).
11. Neural networks for discrimination.
12. Euclidean distance measurement.
13. Stochastic simulation.

Table 4.1 shows which low-level routines were used in the various algorithms. Appendix A
gives the descriptions of the BLAS/BSAS routines for these applications. Each one of the algorithms
investigated requires significant computation both in the number of arithmetic steps and the number
of trials in a given simulated sample. In addition, good pseudo-random number generation plays an
important part in the process (see Appendix B).

As a secondary issue, less work was focussed on signal processing and filtering applications
(such as the FFT, correlation, convolution, moving average, etc.), as these are well known to be
optimum applications for DSP work. Similarly, less work was done on creating distributions, error
checking, etc. which would be needed for a commercial version. In the case of graphics, the
algorithms could be similarly evaluated and optimized.

We did not consider the conventional (non computation-intensive) applications simply because
the current power of PC's are more than sufficient to handle these. In the cases where the initial
motivation for developing the statistic was to minimize the number of computations (in the days
before affordable computers)', no attempt was made to prototype for the DSP.

Before going into more of the details of the high-level algorithms, we describe the approach
we have taken for workstation design (section 5) and algorithm development (section 6). In section
8 we report on the performance. I

I
I
I

s [Box 1978] pointed out that some of the nonparametric tests, such as the Wilcoxon test, were developed
specifically for hand calculation. I

28

S|I

Table 4.1 BSAS/BLAS usage chart.

SVD AR MacKay Projection Projection Density K-means BayesI bootstrap bootstrap matrix pursuit 'pursuit 2D estimation clustering bootstrap

regression prediction inversion I-
ADDVC71

CENTER 1 1 1
CSUM 4

DIST 9
FILL 4
HISTOG I
MAC 3 1
MATMULT 1 3
MATMULT2 1
MATVEC 2
MEAN 1 I 1 1 2

QABS 5 11 14 4

QMAX 1 2 2

QMIN 1 13 SASUM 2 1
SAXPY 4 1 3 3 5
SCALCPY 2 2 3

SCOPY 1 10 1 15 16 10

SDOT 4 3 11 173 SIGN 3 3 3

SNRM2 2

SROT 3

SROTG I

SSCAL 8 2 2 6 4 2 6
3 SSQR 3 6

SUBVEC 1 1

TRANSP 1
UPDATSQR I I

UPDATSUM 1 1 2 23 FFT ____ 11

RAN 1 1

29

I

I

5 STATISTICS WORKSTATION DESIGN

The design of a statistical workstation must meet the needs of the users and provide a cost I
effective solution to their problems. As we noted earlier, using commercially available digital signal
processors to do the bulk of the statistical computation can provide a potential alternative and lower
cost solution. The presently available third-generation DSP's include many features, such as floating
point capability, high processing speeds (20-40 million floating point operations per second
(MFLOPS)), a simple interface, and the capability to support multiprocessor operation. These
features make their application to computation-intensive statistical computations particularly
attractive.

Figure 5.1 shows the speed in floating I
point operations per second versus cost for
various supercomputers [Erisman 1988] and the
proposed DSP-based statistics workstation. 1o3 V WLOPS/SC

Straight lines show the regions of equivalent /Q CRAY-2
ratio of computing speed per dollar invested. F IGsLOP / 1
The advantage of a low-priced DSP workstation 0VI B M2is apparent in an application where cost, P loomS./
immediate access, and an interactive S / / / rk M 3oeon-oM

environment is more important than an e D3

extremely fast execution. For example, 15
minutes of supercomputer time may translate to QSUN APOLLO workstation

25 hours on a dedicated workstation, but the
lower cost and freedom of access to a 10K 100K IM loM lOOM
workstation would make it more favorable. DOLLARS

Thus, our design philosophy emphasizes I
the development of DSP-based computation
algorithms for the basic statistical operations to Figure 5.1 Price/performance ratio for different
achieve a substantial improvement in speed. computers and the proposed statistics workstation.
Since a similar approach had been used earlier
in developing new algorithms for solving linear algebra problems on supercomputers, i.e. BLAS, it
provided a good foundation. Furthermore, even though the statistical algorithms were developed for I
a specific DSP, future improvements in the DSP capabilities will not invalidate most of the algorithms
developed because of the basic operational similarities between DSP's. I

As an alternative, an even higher processing speed could be attained if the statistical
computations could be performed using a custom-designed VLSI processor. However, the design of
such a statistical processor would involve high risk and cost. Typically, the development cost of a I
high-performance specialized processor has been in the $5-10 million range and would be prohibitive
for the planned application.

Yet another approach would be to use the currently available programmable devices, such as
the high-speed bit-slice processors and the high-speed numeric processors. These devices are

30

I

currently used to build very high speed digital processors. A major disadvantage in using this
approach would be the high cost associated with developing support software for these devices.

5.1 Key DSP-based Statistics Workstation Design Objectives

The long term goal will be to develop a flexible, interactive, high-speed, and low cost statistics
workstation capable of solving a wide range of complex statistical problems. The workstation
architectural design objective is to provide a mainframe or low-end supercomputer speed in a desktop
system. This workstation will support scientific quality graphics and will provide a user-friendly
interface. The goal was set to be able to perform statistical computations at least 10 times faster than
on a minicomputer or 100 times faster than on a high-performance PC. The estimated workstation
hardware cost goal was set to be below $10K. Our initial projections showed that this goal could be
reached with the proper hardware and algorithm optimization.

To reach this goal will require:

5.1.1 High Speed Floating Point Computation

Although high speed is provided by today's supercomputers, it is expensive to use and is
difficult to access. When high speed is required in an interactive environment, use of the
supercomputer must be ruled out because of its remote location. High speed in the statistics
workstation is achieved by selecting a fast DSP and optimizing all of the key algorithms. As
mentioned earlier, this optimization will be performed with respect to MAC-like instructions. The
best candidates for processors are those that are inherently parallel and use pipelining techniques.
Increasing only processor clock speed will result in limited improvement. In addition, to reach the
desired performance level, memory speed must be matched to the DSP speed, particularly for
frequent accesses. If very large data arrays are needed, then dynamic memory may provide a more

* efficient approach at a slight reduction in speed.

5.1.2 Low Cost Components

3 Low cost can be achieved only by using low-cost commercial parts that are widely used, easy
to interface, and are reliable. These components include commercial DSP devices, DSP boards and
widely available high-speed memory. Due to their abundance in communications systems, many of
the DSP chips cost less than the currently available math coprocessors. As a result, the low cost may
open up new applications that are not currently cost-effective to perform using supercomputers.

S5.1.3 Compact Design

The compact design constraint means that all of the needed statistics workstation hardware3 should be provided on plug-in boards that can be easily placed in conventional PCs.

5.1.4 Operational Versatility

I The proposed statistics workstation design does not disturb the basic functions of the personal
computer. It will still be capable of running all of the standard applications programs, such as
wordprocessing and spreadsheet processing, in addition to the new capabilities. This approach will

31

I
not only reduce user cost but will also simplify transfer of data between the workstation programs and
other user programs. These capabilities can be easily incorporated if the basic architecture of the PC I
is not changed. To extend the range of applicability, improved access to the standard statistical
programs will be provided in the future. This access will be via extended data translation and
export/import programs.

Since the DSP can operate independently, parallel operation between the host and DSP can
be achieved, thus freeing the host for other tasks such as disk access, etc. In this mode, the DSP
operation is quite similar to a remote batch operation. By not requiring a separate computer for
these tasks, user costs will be lowered.

5.1.5 User Programmability

Since the statistics workstation must be capable of supporting a relatively wide range of 3
problems, a comprehensive library of statistical routines must be provided.

The capability to accept user developed extensions must be made available. User
programming may range from macros to the incorporation of user-developed statistical routines. To
provide this capability, the workstation interface must be clearly defined (open interface specification)
and the necessary software utilities provided. 3
5.2 Proposed System Architecture and Configuration

This section describes the proposed PC __W" bw
statistics workstation system architecture and
configuration. Figure 5.2 shows an overview of U
the host-DSP system. PC

An alternate approach to host-DSP HOST
workstation design would be to incorporate all
of the processing in the DSP, without using a sERIAL
separate host. There are, however, several INTERFACE
disadvantages in using this approach such as the II
development of a new operating system, lack of
file storage support, design of a new user Figure 5.2 DSP-based statistical workstation
interface, and others, making this approach system architecture.
impractical. I
5.2.1 Host Microprocessor

The statistics workstation design can use any high-performance PC (286, 386, 486, Macintosh, I
NeXT*) system as a host. There are few speed demands on the host processor. However, a higher
speed processor is preferred because it can provide faster data handling, including downloading 3

6 The NeXT computer comes equipped with a Motorola 5600 DSP as a peripheral processor. Unfortunately,
it is an integer and not floating-point DSP unit, thus limiting its applicability.

32

programs. A faster processor will also allow non-DSP tasks to be completed faster and thus improve
the overall performance.

Many of the non floating-point computations, such as integer, string, and logic, can be more
efficiently performed in the host at a lower cost. This approach will reduce DSP loading and improve
the overall performance.

5.2.2 DSP

The DSP chip is the key element of the statistics workstation. Therefore its selection is
critical to the performance level achieved. A key factor entering in the selection is the architecture
of the DSP, which in turn will directly affect the operational speed.

I The majority of the earliest DSP's were integer format to gain the needed speed
improvement. Statistical applications, however, routinely require floating point capability and thus
narrows the range of the suitable candidates. Of the presently available floating point DSP's (third
generation), the suitable candidates include AT&T DSP32 and DSP32C, T1 320C30, NEC 77230, and
Motorola 96002. Detailed descriptions of the DSP devices, which have significant differences in
architecture, is provided in Appendix D and [Hart 1989]. In addition, a recently available processor,
the Intel 860, also supports some DSP operations7.

As a limitation, the third generation DSP cannot easily support double precision (64 bit)
computations (except for the 860). These processors operate in a single precision mode (32 bit) and
use 40 bit accumulators to achieve additional accuracy and eliminate round-off errors'. This

enhanced single precision accuracy is acceptable for many statistical computations.

We can expect that the fourth generation DSP devices will overcome the earlier limitations
and support even more complex operations, such as the division and square root. As of now, these
operations are done in software.

DSP type. Of the available DSP devices, the best choices are the AT&T digital signal
processors DSP32 and DSP32C. The DSP32 is a relatively low cost commercial device, widely
available, and has excellent utility software support. However, the DSP32 address space presents a
limitation to problem size, because the memory space is limited to somewhat less than 64K bytes, due
to the 16-bit address bus and internal architecture.

The more advanced DSP32C has several new instructions and a larger address space because
it uses a 24-bit address bus. Because of its speed advantages, the DSP32C is particularly suitable for
a full-size statistics workstation.

DSP architecture. Although the individual DSP's differ, at the higher level there is some
commonality. Thus, every DSP contains two types of processors (see Figure 5.3). One is an integer

I 7 It is interesting to note, that the Intel 860 has been marketed more as a high-speed processor than a DSP.
Similarly, Motorola advertisements refer to the 96002 as a multi-media processor.

' The Motorola 96002 supports extended single precision floating point computations.

I 33

processor (CAU - control arithmetic unit),
mainly used for address and offset
computations. The other type is a floating ," ,, tul
point processor (DAU - data arithmetic unit) PC 1 I

used for all floating computations. The floating
point processor consists of two separate parallel bu J
units - a floating point adder and a floating
point multiplier. Not only do the integer and I
the floating point processors operate in parallel,
but so do the adder and multiplier. These A*__•1

capabilities are achieved by using considerable [__ 1

pipelining.

Interconnection and co ations. Figure 5.3 DSP architecture.

Interconnection of the DSP board is via the
host 8,16, or 32 bit bus. This bus supports data transfer and supplies power to the board. The host
bus will be used to download DSP programs and data, upload results, and obtain DSP status I
information. In addition to the PC bus, a separate serial port provides the capability to connect
multiple DSP's and to access external data.

Communication between the host and the DSP is accomplished via signal flags. Since the
DSP has its own clock and can operate in an asynchronous mode, task synchronization problems are
greatly reduced, as is the need for interrupts.

5.2.3 Memory

Global data is data that is used by both the host processor and the DSP. Since the DSP does I
not have direct access to the host memory, but only to its own memory (aside from using dual access
memory), data must be transferred over the host bus, a relatively time consuming operation
(approximately I MB/s). Thus, global data use should be minimized whenever possible. The use of
fewer, but larger data blocks results in a more efficient operation through the block transfer mode.
Furthermore, when considering the data transfer, we must remember that the DSP may use a
different data format for the floating point numbers. For example, the AT&T DSP32 uses a non-
IEEE floating point format. This requires floating point conversion whenever data is moved between
the microprocessor and the DSP. This is not lasting, however, as some of the next-generation DSP
designs, such as the Motorola 96002, use the IEEE floating-point format.

Local data is data used exclusively by either the host processor or by the DSP. Therefore,
local data use should be maximized to avoid the need for data transfer. DSP's typically contain I
limited on-chip memory, with the bulk of the memory off-chip. The on-chip memory is divided into

RAM and ROM sections. The RAM can be used either for program or data storage. The ROM
section may contain DSP subroutines, trigonometric constants, or it may contain customized DSP I
programs. The code for computation-intensive statistical algorithms often is relatively small and may
be placed in the on-chip memory bank. However, the data files are usually large and require off-chip
storage. I

A key design consideration involves memory sizing and speed selection. A DSP is very
flexible in handling different memory types and the slower memories can be interfaced by introducing

34 I

wait states. Memory is perhaps the most difficult tradeoff because it depends on the scope of the
statisticians problem. For any one user, we must determine the access speed of the memory and the
storage capacity required. Since high speed memory is expensive, a proper balance between cost and
speed can be achieved using slower speed memory for bulk data storage and higher speed memory
for computationally intensive parts of the program. This approach is straightforward because the DSP
can handle two different memory banks with different access times. Thus, the use of high speed static
memory (SRAM) for program and dynamic memory (DRAM) for data storage may be suitable for
the statistics workstation design.

5.2.4 Commercial DSP Boards

Since the available DSP boards differ in their architectures, their manufacturers supply
application software for use with a specific board. This software typically includes software modules
for program and data downloading to the DSP board and data uploading to the host processor.
Appendix D gives descriptions of some of the commercially available DSP boards. In this study a
DSP board manufactured by CAC, Inc. was selected.

5.2.5 Graphics Processor

As the DSP can provide computation speed advantage, the use of a specialized graphics
coprocessor could provide a substantial improvement in display capability. The use of a high-speed
graphics coprocessor, however, would be cost-effective only in those situations where continuous real-
time display capability is needed. Further improvement could be obtained by directly interfacing the
DSP with the graphics coprocessor. For most of the other graphics display needs, the conventional
graphics support (PC-based) would be sufficient. Due to the time constraints, only the PC-based
approach was investigated during the Phase I effort.

5.3 Statistics Workstation Functional Design and Operation

Next to the hardware architecture, the functional design of the statistics workstation will have
a major impact on performance. Particularly important will be function assignment to the different
processors residing in the system. In addition, to achieve optimum performance, the workstation
system control program must be fast and simple thus reducing overhead.

5.3.1 Function Assignment to the Host PC and DSP

The optimum partitioning of computation tasks between the host processor and the DSP is
critical to achieving the best performance. This task assignment, however, is complicated because the
DSP can operate in parallel with the host processor. In addition, the DSP is inherently a parallel
device. Thus the proper balance can be achieved only by a careful consideration of all aspects of this
problem, including data transfer and pipelining.

5.3.2 Host PC Functions

The highest-level operations are controlled by the host PC CPU. The parallel configuration
allows the system to do multitasking with no performance degradation if a careful partitioning of tasks
is chosen. For example, the host processor could work on preprocessing a data set, while the DSP

35

I
is performing a lengthy iteration (see Figure 5.4). Many other similar implementations are possible,
such as multiple DSP's to reduce computation time.

Tasks assigned to the host
processor include the management OW w*W
of all data and the control of the
display. The statistics workstation
master control includes controlling n. doe

the host and DSP programs, data
downloading to the DSP, initiating 58ro or
DSP operations, as well as retrieving ,
computation results from the DSP.

The serial data transfer to l
the DSP can be a lengthy process. I (

If the data transfer is not optimized, YU
then the computation process can I
easily become input/output (I/O)bound. YMI-ad

5.3.3 DSP Functions l
Figure S.4 Flowchart for DSP operation with concurrency.

The DSP performs the bulkof floating point computations. In addition, the DSP performs floating point conversions (IEEE to
internal and internal to IEEE format).

The DSP normally operates in a slave mode to the host processor. Since the DSP is driven 1
by the resident program, it will have a relatively high level of autonomy, including local control, thus
reducing the host control task complexity. 3

The DSP has status registers to indicate error conditions. These can be monitored and the
recovery from error conditions could be performed either locally or delegated to the host processor.
In this way, the host acts as a software/bardware monitor. l

Thus, the DSP operation differs considerably from that of a conventional coprocessor (c.f.
Figure 9.1). Whereas the DSP executes an internal program, the coprocessor only executes those
instructions which are identified for the coprocessor. Furthermore, before any arithmetic instruction
can be executed in the coprocessor, the data must be downloaded. As a result, there is a much
heavier I/O data transfer between the coprocessor and the host processor. 1

Multiprocessor DSP Extensions. Most commercial DSP's are suitable for use in a
multiprocessor environment. In a statistics workstation, the extra processors could handle tasks such
as random number generation or the computation of some complex functions.

5.3.4 Shared Functions 3
There are some tasks that could be divided between the host and the DSP. For example, in

handling graphics displays, the DSP can perform floating point to integer conversion much faster than

36 I
I

the host processor. Thus, graphics data could be preprocessed by the DSP before they are uploaded
to the host processor.

5.3.5 Data Transfer

Data transfer at the system level can be
optimized using direct memory access (DMA) I , II I m 2
block transfers. Provisions for data buffering
must be made for the transfer of larger blocks.
All of these transfers are accomplished in the.
programmed block transfer mode (see Figure F _D _KN b w• D Ht
5.5). __ _ __ _ _I__ __ _ __ _ _ __ _ __ _ _

To achieve the highest efficiency, the Figure 5.5 Parallel bus transfer between host and
I/O transfer between the host and the DSP is DSP.
minimized. This means that the data reside in
the DSP as long as possible and that the
computation tasks are partitioned in such a way as to reduce the data transfer. Minimum data
transfer will also affect the data management strategy and will mean that sufficient DSP memory
space be made available. As memory prices continue to decline, the direct use of DSP memory for
data storage will become more attractive'.

5.4 Extensions for Statistical Applications

Another promising approach is to multitask existing systems. Eddy [1986b,d] describes a
multiprocessor VAX system for statistical calculations. The improvement in this area depends on the
number of processors and is limited by the needed overhead. In addition, for this type of setup only
a limited number of users have access to the system of interconnected processors.

In the future systems we can expect that
multi-tasking will be supported internally to the
statistics workstation as well as in the external Lm _ _ _
environment, as shown in Figure 5.6. HM

06w Sydam Specdlnlzd Prooasois

USER

Figure 5.6 Future DSP-based statistics

workstation expansion.

9 Presently available commercial DSP boards feature up to 8 MB of memory for less than $10K.

37

I

6 DSP SOFTWARE DEVELOPMENT NEEDS

This section outlines the software development objectives, discusses how the statistics m

workstation software will be structured, and what capabilities will be needed at the various levels in
this structure.

6.1 DSP Software Development Objectives

The overall objective of the statistics workstation development is to provide a high-speed
solution to a wide range of computation-intensive statistical problems with sufficient accuracy and
acceptable presentation of results. In particular, if accuracy is not provided by the hardware, different
software algorithms can be substituted.

The key software development objective is to reduce program complexity. Although it would
be highly desirable to develop automatic programming support for the DSP to reduce programming
effort and improve reliability, the complexity of the DSP architecture does not permit an easy solution
of this problem. This complexity is in some respects similar to that of supercomputers and vector
processors. After years of effort and considerable experience with supercomputers and vector
processors, there is still a need to perform a low-level (assembly language) manual optimization to
achieve the desired speed improvement. As recent research has shown, considerable improvement
can be achieved only by extending the level of this optimization, as in the case of BLAS, BLAS-2,
and BLAS-3 [Harrod 1987]. The availability of a comprehensive set of library modules also helps to
reduce program development costs and improves program transportability to a different DSP.

The initial development objectives are to select the assembly language interface, high-level
language, macro utility, and to identify other software development aids.

6.2 Programming Tool Selection

The programming tool selection includes selection of programming languages and any other 3
aids that can be used to assist in the software development process.

The approach taken in this feasibility investigation for statistical software development I
involves using the C compiler with predefined optimized subroutines which are contained in the DSP
library. The presently available DSP libraries contain good collections of general purpose signal
processing routines which can be interfaced with the C language. These routines also provide the
basic functions such as division, power, square root, trigonometric, and exponential functions.
However, they seldom contain any of the more specialized statistical routines described in section 4.
These low-level routines must be hand-coded and included separately.

Although not as optimal from a computation perspective, coding the rest of the statistical
functions in a high-level language is a much faster and less error-prone process than hand coding. •

The C compilers can do program initialization, startup routines, and I/O operations. Structured C I
programs are easier to maintain and debug if optimization is not important. For example, a stack for
subroutine calls will automatically do all of the register bookkeeping.

38

I

When speed is critical, and function call overhead is intolerable, in-line assembler code within
high-level language programs can be used. This permits the programmer to write the critical portions
of the code directly in assembly language.

6.2.1 Assembly Language

Assembler coding is the most common approach to DSP programming and is widely used in
those situations where it is important to minimize program size and optimize speed, such as in the
low-level routines. Properly done, assembler coding can result in highly efficient code (c.f. Appendix

I A).

Unfortunately, in larger programs assembler coding is a very slow and difficult process and
is subject to errors. Assembler coded programs are also more difficult to debug and maintain.
Further, since DSP instructions are unique to a specific manufacturer and subject to major changes
with each new major release, it may be difficult to maintain sufficient experience in DSP

i programming.

The differences in DSP architectures prevent direct transfer of assembler-coded statistical
algorithms from one DSP to another. This situation is similar to that faced by the supercomputer
programmers. They are also required to develop or modify the lower level modules for each change
in computer architecture. Therefore, the device dependence has a major impact on future
development efforts. No simple solution exists for this problem, because a standard architecture
would have a negative effect on future system development. However, the availability of well-defined
library standards can help in the updating phase.

j The selection of the assembly language is determined by the selected hardware. Usually the
only source available is the device manufacturer. Most of the DSP assemblers have the capability to
interface to a higher level language compiler such as C. For more detail on the assembly language
format, see Appendix F.

6.2.2 High-level Programming Language

I A high level programming language is needed to reduce the statistical software development
effort. Unfortunately, the conventional programming languages, such as FORTRAN, Pascal, C,
Modula-2, and Ada, have been developed to support standard processors and seldom have the
capability needed to exploit the special features that are available in DSP's. As a result, these
languages are not particularly well suited for DSP programming if optimized results are desired.
However, they can provide a very cost-effective solution for those parts of the program which are not
particularly computation-intensive or which can call on the optimized routines.

The only widely available high-level compilers for DSP's are C compilers. A C compiler
provides fast, but not always optimal code for the DSP. Because of DSP programming constraints
on pipelining, specific instruction sequence, and operation execution sequence, the C language
compilers are not capable of performing optimization at the lowest level. They do not have the
ability to modify the algorithms to a different, yet equivalent form and cannot look ahead to
conditional branching effects.

I Since a C compiler is device dependent, a different compiler is needed for each device.

39

I
Furthermore, since the compilers are expensive (in comparison to PC language compilers), supplying
a compiler for each DSP can be prohibitive. Performance benchmarks which use the DSP32 C
compiler/assembler are given in Section &

6.2.3 Macro Processors I
A macro processor provides an alternate approach to assembly-level programming and a tool

for high-level languages. A benefit of a macro processor is that it provides a fast way of generating
relatively error-free code in a well structured environment. It also permits the use of highly
optimized code segments which can be readily adapted in different parts of the program. The macros
can be made device independent by changing the template rules. This allows the generation of code I
for different hardware configurations. However, the majority of the present DSP assemblers,
excepting the Motorola 96K assembler, do not yet provide full macro capabilities. Limited macro
definition capability is available in the AT&T DSP32 using the #define construct that is evaluated I
by a preprocessor.

In this study, the STAGE2 macro generator [Waite 1973] was selected for template matching
and low level programming. However, we found that for efficient use, it requires the development
of an optimized set of specific macros.

6.2.4 Other DSP Compilers

It may be possible to develop a compiler that is more DSP-oriented than the general purpose
C language. One approach uses a compiler-compiler generator, such as YACC from the UNIX
system. If both the standard lexical scanner and the code generator are used then it is possible to
update the compiler accurately and efficiently in case future changes are required. 3

Another approach would involve the development of a higher-order language, specifically
tailored for statistical problem definition. One potential starting point is to use an existing hardware
description language, such as VHDL [IEEE 1988], and then modify it to include statistical concepts.
A different approach could use the S language as the starting point.

The use of an APL-like language in a DSP environment could also be investigated. To our i
knowledge, this approach has not yet been investigated. APL problem formulation is very good for
vector and matrix math, but the terse language often makes the programs difficult to read or
maintain. There has been some emphasis on including vector operations in the new FORTRAN and I
C standards (i.e. FORTRAN 88 and Numerical C'4).

6.3 Software Development Guidelines i
In the remainder of section 6, we will examine the individual steps in the software

development process using both assembly and higher level languages. The individual steps in DSP I
program development are shown in Figure 6.1 and listed below.

10 ANSI C standard committee X3J 11.l1

40 I
I

"o Create optimized low-level routines LOW-LEVEL (Inner lo)
"o Write high-level control in C
"o Compile and link low-level with file2..C

high-level
"o Compare speed and debug with respect HIGH-LEVEL

to the host-compiled C code (iteraton control, fi[e2.i

The reduction of problem complexity o

can be best achieved by partitioning the fe cfile2.o aeI
problem into subproblems for which it is easier Iiirar
to identify the solution techniques. In the
statistics workstation, the problem partitioning Compile and link 8aout'
involves task assignments to the host
microprocessor and the slave DSP. This
partitioning should be designed to use the best Figure 6.1 DSP software development using the
capabilities of both devices. C language.

To achieve the desired high efficiency, a careful examination of the mapping of the
computation algorithms to the statistics workstation and DSP architecture must be undertaken. This
step will be most effective only at the lowest levels of the program structure where it will affect the
basic building blocks. Once these blocks have been identified, optimized, and incorporated in a
library, they will be ready to be used with a conventional programming languages, such as C.

Thus, although higher level compilers can do much to reduce the programming effort,
improved efficiency can only be achieved by manual optimization at the BLAS and BSAS level.
Fortunately, there are only a limited number of frequently used lower level modules which need to
be optimized. These modules can be easily identified, and support libraries developed. This
approach was followed during the statistics workstation feasibility investigation.

6.3.1 Algorithm Hierarchy

The algorithm design followed a three level hierarchy (see Section 4 and Figure 4.1). At the
lowest level the building blocks were identified. At the intermediate level, basic statistical algorithms
were identified. At the top level, the outer loops for the computation-intensive statistics were
investigated. The initial question to answer at each of these levels was whether to keep the level in
host or DSP and whether to code in DSP assembly language or C. In addition, we observed that the
hierarchy of a third level application such as bootstrapping makes it an ideal starting point for
multiple DSP operation. Similarly, dedicated DSP's for random number generation and graphics
support could provide performance improvements at the lower levels.

First Level - BLAS with BSAS Extensions. This is the lowest level in the software hierarchy.
It consists of all of the key linear algebra algorithms (BLAS) with extensions for handling statistical
procedures such as mean and variance (BSAS), as described in Section 4.1. Since there are many
such statistical subroutines, only those that were expected to be used widely and affect the evaluation
were selected for detailed investigation.

Since BLAS and BSAS are at the lowest level in algorithm hierarchy, it is also the most
optimized level to take advantage of the DSP's computing speed. Thus, all of these modules were

41

I

programmed in DSP assembly language to achieve the highest speed improvement. Details on the
subroutines i• further described in Appendix A. I

Second Level - Statistical Functions. This level uses the basic building blocks provided by the
BSAS and BLAS subroutines to create more complex statistical operations such as regression,
correlation, or singular value decomposition. This level also represents capabilities similar to those
available in the LINPACK routines. To maintain a speed advantage, these routines must be kept in
the DSP. The tradeoff of a slightly lower speed versus a much reduced code complexity allowed the
majority of these subroutines to be programmed in C.

Third Level - Computation-intensive Application Programs. The third or applications level
represents actual computation-intensive statistical operations, such as bootstrapping on a correlation
or regression analysis. As at the second level, it was initially questioned whether this level should be
programmed in DSP assembly language or in a higher-level language, such as C. Since optimization
at this level has less effect on the program performance than optimization at a lower level, the use
of C at this level reduces both programming effort and debugging.

Note that in the
development of the workstation we
are using two different C compilers. I -boe wrt~l

One of these is used for compiling I
the host program, whereas the other I data

is used for compiling the DSP Preocess d

program (see Figure 6.2). Both of Oow.,oad data DSP /d

these compilers have to be I

compatible with their data Computation C°n tal"n

structures. A clearly defined W I
interface between the two compiled + t,
programs makes this high-level Graph or d,,ay

language support possible. This
interface specifies the needed data GC'rph O•fr d-y-

structures and the data transfer
protocol (see Section 7).

6.3.2 Problem Oriented Language Figure 6.2 Dual software development for host and DSP.

In addition to the use of
higher level languages, another objective of the statistics workstation design was to investigate the
feasibility of providing a problem oriented language interface, similar to that currently available in
the S language.

The S language has undergone considerable changes since its introduction. The most recent
version [Becker 1988] is more C language oriented and as such is more suitable to serve as a basis
of comparison for the statistics workstation interface development. One approach to providing this
problem oriented interface is based on using precompiled modules in conjunction with a user
command interpreter. Although a complete command interpreter would require considerable
programming effort, the initial investigation confirmed the feasibility of this approach. Efron [19861
noted that updating the S language for computation-intensive applications is not that difficult. For

42 I
I

I
example, bootstrapping a correlation coefficient reduces to

tboot(data, correlation, B=1000)

in the S language, where B is the number of bootstraps.

Beyond this level, software support is needed to simplify interfacing the statistical analysis
programs to other user application programs. For example, a link to a higher-level language or to
a spreadsheet, wordprocessing, or graphics program may be desirable. Providing a spreadsheet-based
input is a particularly important feature of the statistics workstation because it permits the use of
statistical computation results as part of more complex models.

6.3.3 Data Structures

The selection of data structures for use in the statistics workstation design is an important
decision because the data structure not only has a major influence on performance during data
transfer, but also during the actual computations.

Data transfer to the DSP is handled by the host processor. Data conversion to the needed
format is best handled by the DSP because of the higher speed. Since the DSP is capable of a single
instruction float-to-integer conversion, this capability should be used whenever integer data is needed
in the main program.

Data storage schemes. A uniform data storage scheme will not only speed up computations,
but will alo help during debugging. For example, data storage is particularly important when fast
matrix solution algorithms are used. The convention in this case is to store the matrix data by rowmajor. For other data structures, the program data structure must be carefully examined to determine
the optimum partitioning scheme.

All of the prototyped BLAS and BSAS-based algorithms used a common storage approach
(row major). Since the majority of these subroutines are used in conjunction with the C language,
register assignment and usage needed by the C program is strictly observed.

Global data. Global data handling represents some unique problems. Normally all of the
needed global data should be downloaded to the DSP to rmduce the need for continuous data access
to the host memory. In future implementations, a common dual access memory may provide
improvement. This will, however, require that a standard format (IEEE standard) for float variables
be used.

Memory management. In the feasibility study, memory allocation is provided in the DSP at
the compile stage (static memory). There are also several undocLmented, but available, functions in
the AT&T C compiler suitable for dynamic memory allocation. This is critical for applications where
high speed memory is at a premium. Several other general memory management schemes may also
be employed. In one scheme, the host would be responsible for the memory management. A
combination of DSP and PC memory management is also possible.

43

I
6.3.4 DSP Programming Approach

Although many of the statistical problems are easy to set up and to solve, some of the more
recent statistical methodologies are not only complex, but also require substantial setup time. These
problems can seldom be expressed in a simple sequence of steps. Thus their solution demands
considerable flexibility in the statistics workstation design. As the problem complexity can be reduced
by modular structuring, identification of the basic building blocks should be made whenever possible.

The emphasis in the statistics workstation software development effort is to achieve the best
possible speed improvement. This required using the unique capabilities of the DSP to the maximum
extent possible. Particularly important was the use of compound operations, autoincrementing of
addresses, and fully loading the parallel structure.

We found that many of the I
programming techniques developed T - --- , T _,
for numerical coprocessors were not H
directly applicable in the DSP Host processor
environment for a number of
reasons, as explained below. First, T T= - T,
whereas numeric coprocessors T. -
operate in line with the main Host and DSP
microprocessor and share a common
instruction structure, the DSP is an
autonomous device with its own Figure 6.3 Comparison DSP and PC program execution.
program storage and instruction set.
Second, when using the DSP, both the program and the data must be downloaded and results
retrieved (see Figure 6.3). The numeric coprocessor, on the other hand also requires data load, but
accepts only a single instruction. The conventional numeric coprocessors use fixed microprograms
in a stack mode and do not support internal programming. Third, the numeric processors have very
limited data storage capacity. Therefore, data must be downloaded every time it is needed. The DSP
on the other hand has more capacity for data storage, requires less data transfer, and operates
independently.

Thus, the program development for DSP applications had to follow a different set of rules -
direct translation of programs developed for use with numeric coprocessors could seldom achieve

the potential speed improvement possible with the DSP's. It also meant that some new and unique I
algorithms had to be developed and the developed code optimized for speed.

Tasking of Statistical Procedures. Every statistical procedure involves three distinct phases:
setup, operation, and transfer of results. When computation-intensive statistical procedures are
selected, most of the processing time is spent in the second phase.

For each set of statistical computations, we can distinguish those basic operations that belong
to the host or to the DSP, or to those that use the capabilities of both processors. The DSP is most
efficient when floating point computations are performed in parallel with indexing in the DSP. A
further objective is to balance the operations between the host processor and the DSP (see Figure
6.4). In particular, it is important to keep the PC busy while waiting for the DSP to complete its
computations.

44 I
I

I -- > Measured from start of download to end of upload - >

Download Download Floating point Compute IFloating point IUpload
program data format conversion format conversion data

DSP

PC 1EPC available P

I Overlap Concurrent or parallel operation possible Overlap

I Figure 6.4 Task assignment for host and DSP.

I
The important issues in tasking are computation task duration and the specific task

assignments. Some of the computations can be delayed due to the DSP pipeline effects. For these
instructions we have to consider the number of cycles needed before the result is available, and the
number of wait cycles (due to memory conflicts). The computation task assignment must further
consider DSP characteristics, such as concurrent index updating and multiply-accumulate instructions.

Statistical Algorithm Optimization. Statistical algorithm development is a two-step process.
First, the low level loops are examined and optimized subroutines introduced. Second, the selected
algorithms are modified to favor MAC operations. To achieve the best speedup, it is important to
identify the inner loops that are repeated many times. As addressed previously, optimization of
operations is most effective when performed at this level. The low level optimization must be
performed in assembly language. This optimization requires great familiarity with the DSP
architecture and command structure. After this optimization, the C language programming of the
DSP is similar to developing conventional programs.

I There are several factors which affect how optimization is accomplished. Some of these
include maximizing operation efficiency, minimizing program size, or maximizing program speed.
Operation efficiency determines how efficient the program is in solving the user's problems with
regard to wall-clock time as well as accuracy.

The automatic code optimization problem is very difficult and a simple solution cannot be
expected without the development of new techniques. Its solution will probably use va-ious AI
techniques such as pattern recognition. However, considerable improvement in program efficiency
can be achieved if C code is structured in such a way that it reflects the DSP instruction set and
architectural constraints". Although a DSP C compiler can do an adequate job, our experience
shows that even the most highly optimized code can be improved by up to 50% by further hand

pr One of the recommendations made by AT&T concerning the use of the C language is to think how the

program could be coded in the assembly language and then to write a program that maps well to the hardware
[AT&T 19881. This implies that pointer addressing should be used instead of array addressing, wherever possible.

I 45

I
optimization of the intermediate assembler code.

Optimization of a C program usually requires compiling the program twice. The first
compilation is used to determine those areas where potential improvement is possible by rearranging
the C code. After these modifications are made, the second compilation then leads to a more
efficient version. Unfortunately, the use of hand-coded optimization creates new problems if code
portability at the C language level is desired.

The optimization of the low-level DSP routines involves a number of different approaches
and constraints. Some of the more important are outlined below.

6.4 Computation Speed Optimization.

This section contains a brief description of techniques used in programming and optimizing
the DSP statistical routines. Since the conventional high-level program development process is well
known, in this section we will concentrate on those program development aspects which are unique
to the DSP and specifically to AT&T DSP32 programming.

Loop recognition. In most statistical programs, the highest percentage of computations occur
in the inner loops. Thus, the primary concern should be placed on inner loop identification and
optimization to achieve fast execution.

Branching operations. Branching operations that are supported by the DSP include i
conditional branching, loop counter branching, call subroutine, return from subroutine, and the
unconditional goto. Testing for conditions is an expensive operation in a DSP, because test results
are not immediately available due to the pipelining effects. Thus, the conditional branching is based
on test results obtained four instructions earlier. An alternative to the conditional branching is
provided by the conditional accumulator load instruction which does not suffer from the lengthy

delay. This instruction is particularly effective in inner loops.

Pipelining and interleaving. The most
important cc .,'traints are those imposed by Y = b + ax y available for multiply
pipelining of operations. In this context, 0 1ý ý2 3
pipelining means that the results of the more
complex floating point operations may not be
available for several instruction cycles. The 0 1 2 3
sequencing of operations is particularly
important if efficiency of computations is to be _1 _2• @optimized. "m staggered instructions

Pipelining of DSP instructions is
illustrated in Figure 6.5. To satisfy pipeline Figure 6.5 DSP pipelined instructions.
constraints, the programmer must insert a
number of "no operations" or "nops" to comply
with these restrictions. Although these added instructions satisfy the pipeline constraints, they have I
the effect of slowing down the computations.

I
46 I

I

By interleaving operations, the efficiency of computations can be increased. This involves
replacing nop instructions with other instructions that are not dependent on the current
computations. However the resulting code becomes not only more difficult to understand, but also
more difficult to debug.

When interleaving, it is important to consider several factors simultaneously. These factors
include the available instruction cycles assigned to nop instructions, available registers, and the set
of instructions which could be executed in a different sequence.

Although interleaving appears to be a simple technique, efficient use requires a great
familiarity with the computation algorithms, something not usually available during the compilation
process. Thus, interleaving is particularly difficult to do automatically. The best approach is to
develop the algorithm first without considering the interleaving. After the algorithm has been fullydebugged, note the locations of all of the nop operators, and then determine which of the succeeding
instructions could be moved to these locations.

I Register and accumulator assignmenL Since only a limited number of registers and
accumulators are available, computation optimization must consider availability, reachability, andu effectiveness.

An availability chart can clearly identify those registers which have been already assigned and
which are available for use (see Figure 6.6). Typically, a set of registers is allocated for system use.
If these registers are to be used, they must be saved and reset after the operations have been
completed.

Reachability refers to data indexing. A location is easily reachable if it can be accessed as
part of the normal register incrementing process. Furthermore, data can be retrieved faster if the
address is already available in one of the address registers.

Effectiveness of keeping certain values or data in accumulators and registers depends to a
great extent on data usage and availability of registers and accumulators. Good data structure layout
can greatly improve processing speed. This is particularly important when working with matrices or
other more complex data structures.

Register indexing operations. Register indexing requires careful consideration of the datastorage layout. The fastest access will be obtained if registers can be incremented in a constant
manner as in pointer incrementing.

Floating-point considerations. When performing floating point computations, such as summing
arrays, data should remain in the accumulator if possible. This approach results in a higher accuracy
because the accumulators have more significant digits than the memory storage. If intermediate data
saves are used, this advantage is lost.

Subroutine calls. Since the low-level statistical algorithms are implemented as subroutines,
it will be necessary to examine how they can be best interfaced with the higher level languages. For
subroutine calls, a number of different approaches are possible. If only a few parameters are needed,

then these could be loaded in registers or accumulators, before the subroutine is called. A second
approach could store the parameters after the subroutine call. The return registers then could be

47

I
used to pick up the needed parameters. Of the c

above techniques, direct passing of parameters pntta, i
via registers or accumulators is the most efficient r, data 5.0 8o 25.0
from a computation viewpoint. Therefore it is r2 al
often used for high-speed, embedded, real-time
applications. r3

The third approach involves use of a call
stack. In this case the parameters are placed on rs

the stack before the subroutine is called. This ,6
approach is more suitable for compiled .7 I
programs. The overhead incurred with the
subroutine calls involves parameter passing, e
register and accumulator saving and restoring, ,9 U
and adjusting the return register value for proper r
return from the subroutine. Although this
overhead could be eliminated by direct coding, r11 I
the advantages of structural programming are r12

lost and more memory may be required. r13

Computation efficiency. Computation r,14 stack
efficiency will depend on the use of compound r15 N
instructions. If both the DAU and CAU can
operate concurrently, then maximum gain in ,06
operating efficiency can be obtained. r17

Minimizing program size. In the past, r8 return-

when memory was expensive and limited, much ,-19 stackinc

effort was spent on reducing program size, often ,20
at the expense of increased solution time.
Memory costs are less an issue today. However, ,i
the high-speed memory that is used within the •
DSP is still expensive and usually limited in size.
As a result, DSP program size optimization will Figure 6.6 Register and accumulator availability
still be important. chart. Example of pointer to data.

Maximizing program speed. When
working with computation-intensive statistical problems, high speed is a major requirement. Although
the use of the DSP alone results in speed improvement, further optimization is still required to I
achieve the best throughput. Note, however, that it is usually impossible to optimize both with
respect to program size and speed.

Memory access delays. Memory delays due to the memory access wait states can be reduced
by separating program and data in different memory banks.

Other constraints and restrictions. In addition to pipeline delays there are other constraints
and restrictions which increase solution time [AT&T 19881. Strict adherence to these rules is
required to obtain reliable results. Fortunately, the DSP assembler will report the majority of the

48 I

restriction violations. Often, a simple rearrangement of instructions will reduce the need for
introducing nop instructions.

SMain C progrm

I _ir
y file

Figure 6.7 DSP compilation and data flow process.

3 All of the above considerations complicate the program development and debugging effort
and make it more difficult to optimize the statistical subroutines. This optimization is performed
manually now, because current compilers are not capable of intelligent modification of statistical3 algorithms. Section 8 presents the results of algorithm optimization and C program development for
several routines, given the above outlined approach to programming and meeting constraints. These
DSP algorithms are compared against their implementation in the PC environment (see Figure 6.7).

II
I
I
I
I
I
I 49

I

I

7 STATISTICS WORKSTATION INTERFACE I
This section describes the interface between the host processor and the DSP board. Both I

hardware and software aspects are considered. The statistics workstation hardware interface includes
the internal link between the host microprocessor and the DSP and the external connections to other
systems. The workstation software interface includes operating system calls and the software links
between host and DSP programs.

7.1 Software Interface I
The minimum support software includes DSP compiler, simulator, and custom softwareneeded to integrate the DSP in a microcomputer environment. Additional custom software is needed

to interface the DSP to the graphics display and to the operating system.

The applications program interface design depends on the selected host language (C I
language) and the DSP compiler characteristics. The selected programming language prescribes a
statistical function call interface, which in turn defines the lower level implementation. Since the
statistical functions are evaluated in the DSP, the software interface module must control the loading I
of statistical function modules.

Since the statistics workstation software interface is relatively complex, a formal description
of this interface is needed to simplify program development. This description is usually expressed in
a meta-language.

7.1.1 Software Description Meta-language

The objective of the meta-language development was to define a formal interface between 3
the main host and the DSP programs. By a formal interface we mean a capability similar to that of
an Interface Description Language (IDL) [Snodgrass 1989] or a hardware description language, such
as VHSIC Hardware Description Language (VHDL) [IEEE 1988].

To begin, we must define the software routines to be interfaced. A typical mathematical
routine can be described as either a procedure (no return value) or a function (return value) along
with a set of arguments. The arguments themselves can be floating point or integer values, single
values or arrays, pointers to functions, and combinations. The strength of a high-level language, such
as C, is that it is able to free the programmer from having to do the bookkeeping involved with the
arguments (such as saving the registers and stack location). This advantage is lost when dealing with
two distinct processors.

When developing a routine for a host-controlled, slave-mode DSP program, the programmer I
is responsible for matching the arguments between two different processors, and controlling the child
program (see Figure 7.1). This involves loading the DSP program and symbol table, finding the labels
or symbols corresponding to the arguments, finding the addresses of these symbols, etc. This becomes I
tedious and prone to errors unless some automation tools can be introduced.

I
501 I

I

A formal description in the form of a meta-language or software description language (SDL)
is essential to simplify automatic program development and to improve the overall program reliability
[Wirth 1976]. An example of an automated approach is the use of the STAGE2 macrogenerator
[Waite 1973] for generating DSP interface programs'2. STAGE2 is essentially a template matching
program.

An example of a template input that we have successfully used in creating a C code PC/DSP
interface module, complete with a correct argument list, is given in Listing 7.1.

I #define MAXELEMENTS 601
FUNCTION:ProjPursTwo(n_d,n_p,Data,x,Jjiter,index,toler,Z);
EXEC:a.out;
SET:float Z(rn_d*np,MAXELEMENTS);
DOWNLOAD:int n_ d,n_p,Jj;DOWNLOAD: float Data (n -d*n_p, MAXELEMENTS);
DOWNLOAD:float toler(2,2);
UPLOAD:int iter(2,2);
UPLOAD:float index(1,1);
DOWNUP:float x(2*np, 10);
START;
PROBE: Z, x, iter, index, errn;
TASK: printf ("%d", errn);
TASK:plotgraph(index, x, iter, Z);END;

Listing 7.1 Projection pursuit SDL.

This file, together with the master template and the STAGE2 program, was used to interface
the host PC program with the DSP board. In this case, the DSP executable program, called "a.out",
was designed to run a 2D projection pursuit algorithm given some initial data supplied by the PC.
The STAGE2 program generated the interface software required for transferring the program

arguments (data and control parameters) between the PC and DSP. In this example, a concurrent
task performed by the PC is intermediate plotting of the 2D projection plot as the DSP is running.

The strength of the approach is that the formal syntax, similar to that used in the VHDL
language or in Ada [Cohen 1986] (e.g. download, upload, downup, are similar to in, out, inout in
Ada), eliminates inconsistency errors that could easily occur with handcoding. Further benefits of the
formalized description include easier checking, clearer description, and reduced debugging effort.

The SDL syntax is contained in Listing 7.2. The argument types can be float (float), integer
(int), or pointer to a function (function). In the latter case, a character string must be passed to
match the syn` ' table.

"2 The AWK language (UNIX utility) is a similarly structured language that has many of the same capabilities
as STAGE2.

51

I

Fdefine Any preprocessor directives

FUNCTION: The C level routine along with its arguments.

EXEC: The name of the DSP executable file calling FUNCTION.

SET: Declares argument type and dimension (e.g. float Z(number elements, max dim))

DOWNLOAD: Declares arguments to be downloaded to the DSP.

UPLOAD: Declares arguments to be uploaded from the DSP.

DOWNUP: Declares arguments to be downloaded and uploaded.

START: Downloads arguments and starts the DSP program EXEC.

PROBE: Uploads arguments while DSP running.

TASK: Runs concurrent task on the host while DSP is running.

END: Uploads arguments and returns from C-level routine.

Other syntax statements are the tollowing.

LOOP: Used instead of START to call FUNCTION repetitively.

CONTROL: Downloads arguments while DSP running.

Listing 7.2 Syntax for software description language. I
By invoking STAGE2 on a file containing the SDL syntax, a C module containing the

interface routines initDSPFUNCTIONO and FUNCTIONDSP(args) can be created.

Example. A shorter example of the SDL approach allows us to present the details in greater
clarity. In this example, we wish to have the DSP perform a simple function call with one argument.
The function RunTest(x) replaces x by exp(x). The DSP interface SDL file is given in Listing 7.3
("rundsp.stg") while the C module containing this function' 3 is given in Listing 7.4 ("runtest.c"). Note
that the array size for x is dimensioned by x(1,1), where the first value of 1 indicates that a single I
value is downloaded and the second value of 1 indicates that a single floating point memory location
in the DSP must be allocated for x.

I

'3 Due to conflicts regarding argument types in the two compilers in use (Turbo C for PC and AT&T for the
DSP), the traditional C declaration was uniformly used. I

52 I
I

I FUNCTION:RunTest(x); stal
EXEC:a.out;
DOWNtJP:float x(1,1);
START;

Listing 73 SDL (named "rundsp~stg*) [jte e ao
to perform simple function call.

#include 'math.h> finish
void RunTest (x) Figure 7.1 Host and DSP executable files.
float *x;

*X= exp(*x);___________ ____

STAGE2
Listing 7.4 C function "runtest.c". rundspdc

hod DSP o ywlc
main()el 1

float x=1.0; C

initDSP RunTesto;
RunTestDSP(&x); _______________

RunTest(&x;

________________________ Figure 7.2 SDL compilation process.

Listing 7.5 C module "runmain.c" to

be executed by host.

I The first step is to create the interface module by running STAGE2 with the appropriate
template on "rundsp~stg". This creates the C module "rundsp.c" (see Listing 7.6).

I To create the DSP executable module "a.out", the files "rundsp.c" and "runtest.c" are compiled
and linked with the DSP C utilities (see Figure 7.2). To run the PC program executing "a.out", the
files "runmain.c" and "rundsp.c" are compiled and linked with the PC C-language utilities. TheI process is complete when the PC program calls the DSP executable "a.out" during runtime (see
Figure 7.1).

I By examining the amount of code generated by the STAGE2 program in "rundsp.c" (see

I 53

I
Listing.7.6) and comparing to the formal

Wf defined(NO DSP) specification in "rundsp.stg", one can see the savings
#include <ctl i.h2, in effort. In the majority of the DSP programs
hincludel <conio. h)

#include "\tc\swslib\dstruct.h" coded, we have used this description language. It
st,-uct DPVAR x DP; has considerably reduced development time,
struct DSPVAR flg DMP; particularly for the algorithms that require several
struct DSPVAR errn"D.; arguments to be passed. For example, the
void initDSPRunTest(vold) projection pursuit description of Listing 7.1

{t trial=O; produced approximately 100 lines of error-freestatic following=O
default addr(); code. In the following discussion we describe more
if (!dsp dl exec("a. out". trial)) of the hardware specifics for interfacing. IexlitTli)T

dsp-runo;
trialul; 7.1.2 Operating System Interface
x DSP - find addr("x");
fTag DSP - fTnd addr ("flag");
errnDSP = find-addr ("errno"); All of the 1/0 operations for data transfer

between the host and the DSP are handled by
int RunTest OSP(x) special subroutines. The data transfer uses 1/0 port
float ,[];- mapping conventions, and data is transferred by
I dn-usload-n1 errn; writing or reading from the specified ports. No
/* down-uploading float 'I special additions to the operating system are needed

setfloaT.(1, x. & x.DSP); and all of the required operations are easily done
dlblock(& x DSP);
setint(l, &-errn, & errn MSP); with the presently available host microprocessor and
setlnt(l, & start. & flag DSP); DOS commands.
dlblock(& flag DSP);
while(dsp done flag(flag_DP.addr))[

if(kbT1itoI(Since the DSP is capable of autonomous
if (getcho == 'q')(dsp halt(); operation, true multitasking is possible. By properly

iniiDP RunTest(); scheduling tasks, a substantial improvement inreturn(T); system speed can be achieved. In the simplest case,

the task scheduling can be handled as an extension

upblock(& Y DSP); to the operating system. A well known example of m
return(O); this is the WindowsTm multitasking environment.

}
#endif 7.1-3 DSP Program Interface

#if !defined(NO DSP)
#include "\tc\swsl ib\swsfxn. h"
float x[1]; In their logical structure, DSP programs
main() follow the conventional approach. A careful design m

WaitUntilFlag(; pcrmits an easy substitution of a DSP subroutine
ConvertDSP(l ,x); for a conventional one.
RunTest(x);
ConvertlEEE(l ,x);
ResetToStarto; DSP program arguments. DSP program

arguments are determined by the selected algorithm
#endif and are defined as part of the program module.

Since there is a wide variation in algorithms, a

Listing 7.6 STAGE2 C code for single universal argument sequence cannot be easily
"rundsp.stg". Note the expanded code size. established and each algorithm must be considered I

separately. This customized approach creates a

number of difficulties. First, in conventional
languages the argument sequence is important. This means that the procedure must use an argument

54

I

sequence identical to that defined in the calling program. Second, even if default arguments are used,
the same argument sequence must be retained"'. Although a variable argument list is available in
the C language, good error checking and diagnostic capability is not a simple task. However, the use
of the STAGE2 SDL can alleviate this.

Specific parts of the interface program controls data transfer and the DSP computation
process. The specific DSP program arguments include the following:

Downloaded input data. For data downloading we need to know data location, data type, and
array size. Note there are two distinct locations for problem related data. One of these locations
is in the host memory, the other in the DSP memory.

Results to be uploaded. Before results can be uploaded to the host, data location, data type,
and array size must be identified and then the necessary commands issued. Floating point numbers
are converted back to IEEE format before they are uploaded to the host because this conversion can
be performed faster in the DSP.

Control information. Other parameters passed to the DSP will include the number of
iterations and other similar control-oriented information. This is placed in a data block where it can
be accessed during normal DSP operation.

7.1.4 Detailed Explanation of Main Program Tasks

The main program residing in the host processor must perform a multitude of tasks that
directly affect the host to DSP interface (see stages II and mI of Figure 7.3). The most important
of these tasks are described below.

Program control. The host program controls the top level operations performed in the host
CPU and in the DSP. Typical program operations include reading and preprocessing data,
determining task sequence, initiating specific tasks, checking task completion, etc.

The local control used in the DSP program includes iteration control and other similar control
operations which are needed for the specific computation.

DSP setup. Before the program and data can be downloaded to the DSP, the DSP has to be
set up for data transfer. This involves issuing the specific instructions needed to initialize the DSP
and set up the DMA channel'3 .

Data transfer to and from the DSP is performed in the DMA mode (block transfer) for both
the DSP program and the data to achieve the best efficiency. DMA transfer involves setting up
source and destination addresses, mode of transfer and block length. Once the setup has been
completed, block data transfer is automatic. Note that these data addresses must be absolute, not

"' For each statistical function it should be investigated if the program arguments can be expressed as data

structures. Should this be feasible, then we could establish the following structures: input, output, and control.

's DSP initialization begins with a reset instruction and is followed by the operating mode setup.

55

I

symbolic. Thus, symbolic addresses
have to be replaced by theirI
absolute components. [H it. DS, code Co. and

Loading DSP program and I
data. The DSP program for the
AT&T DSP32 is contained in a Host_ CPU wa

exautae cPU extracts Oowrdoad data
COFF (Unix-type Common Object pLoirw, to OW dta kOS -i
File Format). This file not only
contains instructions for the DSP
but also contains program and data _Wait for 0I __I -d
labels and their addresses. These L to fd [Get data '°ation, L-- aa aata

addresses will be needed to
determine from which DSP memory
locations to load and retrieve data.

Downloading the program is 1
a relatively simple task, because
normally all of the program will be Figure 7.3 Stages of DSP program development and
contained in one or two data blocks, execution.
The program data locations are
available in the COFF header and the program data are contained in a COFF file section. If
sufficient memory is available, then all of the needed programs could be stored in the host memory
to speed up data transfer.

Data transfer between the host and the DSP is bidirectional and includes downloading data
and retrieving results. Faster operation could be achieved by blocking all of the information as a
contiguous block with well defined structure. To download data we need to know addresses for the
source data location in memory and the corresponding location in 'le DSP (from the symbol table,
see Appendix F). Direct downloading of data from a file without setting up detailed data arrays in _
the host memory could be further investigated because this approach could reduce the size of the
host program. It could also improve the speed in some situations. However, if sufficient processing
time and memory space is available in the host, then host-based data buffering is preferable. This I
means that the host can read in the next data file, while the DSP is processing the previous data.

Starting the DSPprogram. DSP program execution starts from memory location 0 after a reset 3
signal has been issued. This means that the program at location 0 should contain the necessary logic
to select the specific program blocks. If the progiam is restarted, then the same conditions will apply.
However, it is also possible to do a software controlled program restart, which could bypass some of l
the initialization steps.

Concurrent procotsing. The host processor can perform other tasks while waiting for DSP 3
computation completion. For example, the host could perform data preprocessing, file updating, or
other tasks which are not directly affected by the expected results.

Check for computation completion. The check of DSP status involves testing of the
completion flag condition. Note, that continuous checking is not needed in this case, because
computation results do not have to be retrieved immediately. In this respect DSP operation differs

56 I
I

3 considerably from other peripheral devices, such as communication devices, where data may be lost
if they are not retrieved immediately.

3 Upload results. The setting of the DSP completion flag indicates that all of the computations
have been completed and that the results are available for uploading to the host (this is similar to
downloading excepting the data direction). The symbol table contains the needed addresses, and the3 data block size is available from the host program.

Halt DSP operation. If the computations must be aborted and results retrieved, the DSP can3 be suspended by issuing a halt command.

7.2 Hardware Interface

7.2.1 Processor Interface

The main system bus connects the host processor and the DSP board. System throughput can
be improved by increasing the system clock speed or by using a faster data bus. All of the 1/0
transfer between the host and the DSP is via the host bus using either byte or 16-bit word format.
Since the next-generation DSP's, such as the Motorola 96002, will support a 32-bit bus, external data
transfer will be greatly improved".

I 7.2.2 DSP Interface to External World

In addition to the host interface, the DSP supports a built-in external serial port capable of
supporting communications between processors in a multiprocessor environment or accepting data
in a real-time data collection mode. The latter type of application would be highly suitable for use
in statistical process control. The commercially available DSP boards that have a serial bus typically
use this interface for audio (including telephone, speech, etc.) processing applications [Gorin 1986].

3 7.2.3 Graphics Interface

The host system bus is also used to interface the graphics display controller. Since the
conventional graphics boards do not support higher level graphics operations, the coordinate
transformations, display scaling, and data conversion (floating-point to integer) must be performed
by either the host processor or the DSP. Since many of these operations can be done efficiently in
a DSP, the use of a DSP instead of a high-performance graphics coprocessor can reduce the overall
system cost. By performing these operations in the DSP, a speed advantage is gained because of the
unique operations available. For example, the DSP can provide floating point to integer conversion
in a single instruction cycle. The data transfer rate can also be increased because it takes less time3 to transfer a fixed-point number than a floating-point number directly to the graphics processor.

An alternate approach uses a separate graphics processor to handle the statistics workstation
display needs, as shown in Figure 7.4.

3 Note that the internal data buses are already supporting 32-bit transfer.

57

U
7.2.4 Interrupts 3

Although the DSP is capable of AP"kWm-

handling interrupts, this capability is not PC

normally needed in the statistics workstation -
operation, except where real-time operation is
desired and certain data must be processed . iu i
immediately. The DSP is particularly well ..-

suited in these applications because it is capable
of supporting very fast task switching (in the Hos PC GUphim Pmoserw bod

microsecond range).

In the statistics workstation we can Figure 7.4 Graphics interface.

distinguish two different types of interrupts:

Host-initiated interrupts. Most PC-based systems are capable of supporting fairly sophisticated
interrupt structures. Many of these interrupt structures are assigned to specific DOS tasks, such as I
disk drivers or printers. In most PC systems, hardware is available to handle extra user-defined

interrupts. These interrupts could be used to perform real-time data collection and processing.

DSP initiated interiupts. DSP initiated interrupts could be used to signal either task
completion or the occurrence of some error conditions.

7.2.5 Multiprocessor DSP Systems I
Most commercial DSP's, such as the AT&T DSP32, are suitable for use in a multiprocessor

environment and their interfacing does not present any special hardware related problems.

5

I

58

8 PERFORMANCE BENCHMARKING

8.1 DSP Benchmarking

Performance evaluation of the DSP-based statistical algorithms included analytical and
computer simulation studies, as well as experiments on working prototypes. The evaluation included
computation timing and memory size requirements. In particular, the performance of the lower level
algorithm implementation was evaluated in detail.

Relatively few timing benchmarks exist for statistical problems. Many of these benchmarks
are based on data sets where either accuracy is important [Wetherill 19851 or correctly classifying data
is important [Jain 1987]. Linear algebra benchmarks, such as LINPACK, are only partially applicable
to statistical problems. Generic benchmarks such as Whetstones and Dhrystones [Wilson 1988, Price
19891, and the SPEC benchmark [Uniejewski 1989] are designed to measure processor speed.
Therefore, a number of standard statistical data sets have been selected as a basis for benchmarking.
These are used to compare the proposed statistics workstation design against conventional
implementations.

Where appropriate, an analytical or simulation approach was used. Most of this work
involved using the DSP simulator, because it provided detailed timing information. The computation
speed estimates included algorithm setup time, pipelining constraints, and memory access time. The
low-level timing results are found in Appendix E. The accuracy evaluation was based more on the
experimental work and comparison to conventional microprocessors. Since the most accurate overall
performance evaluation can be conducted only in the full operating environment, the actual DSP and
its operating environment was used.

As the results are hardware and software dependent, we first give a short description of the
hardware and software systems.

8.1.1 Hardware Configuration and Characteristics

Most of the Phase I development was done on an IBM compatible 386-type personal
computer using a Micronics motherboard operating at 20 MHz. An 8 MHz 287 coprocessor was used
for floating point calculations. Static column memory (80 ns access time) was used to achieve zero-
state delay.

The DSP board used was a CAC 16 MHz board with AT&T DSP32 processor. The board
selection was based on the lowest cost and the easy availability of the support software.

8.1.2 Operating System and Support Software

All of the benchmarking was performed under the Microsoft MS-DOS 4.01 operating system.
Host processor software was developed using Borland's Turbo C, Version 2.0, compiler. The DSP
software was developed using the AT&T assembler and C compiler (and Turbo C for initial

59

debugging). In addition, the AT&T and CAC DSP 32 utility programs and libraries [AT&T 19881
were used.

8.1.3 Benchmark Timing

When conducting the
benchmarking, most of the timing MAIN
was performed on the application I
level. For the selected benchmark
problems, two different programsH
were developed. One of these I
programs used only the PC, while Download date
the other was developed to perform C D
the computation-intensive tasks in module module Run "aou
the DSP. In most of the cases, the
same C modules were used to do Uload data

the computation in each program - retrn return
only the compilation and interfacing
differed. The timing comparison
was based on the actual run times of Figure 8.1 Data flow for host and DSP program.
the two programs, using the same
data file (see Figure 8.1).

For a finer timing it will be necessary to identify the specific phases of the problem and the
time required for each of these phases. Knowledge of this information enables further improvements
by being able to pinpoint the most time consuming tasks".

The specific time functions include (c.£ Figure 6.1):

(1) User setup. The initial setup time is determined by the user selected options. This time _
involves reading the data files and choosing computing options. It is estimated that 95% of total
computation time is devoted to the user input and therefore speed of computation may not be a
primary issue [Fridlund 19901 during data setup. On this basis, 5% of the total time is required for
the actual statistical computation. However, as the computation-intensive statistics take anywhere
from 100 times and more as long to complete as the traditional methods, speed of computation
becomes more important.

(2) Data and program setup time. This setup time includes the initial computational setup time,
such as initialization of arrays, preliminary computations, and file initialization. The program
downloading to the DSP is handled by a utility program. Since the DSP object files are in a COFF

format, the utility program must extract the binary code and then download it to the proper

'7 Functional partition by tasks is particularly important to properly evaluate the statistics workstation
performance. The task partitioning must also consider concurrent operation of DSP and host because the most
effective mode of operation occurs if overall processing time can be reduced.

60

I

I

I location"'. The time it takes to do this is similar to the time for loading a program from DOS. This
includes some overhead plus time that will be proportional to program size. Before downloading
begins, the absolute memory locations for data transfer are obtained from the symbolic data labels
in the COFF file. This typically will only have to be done once for a given algorithm.

(3) Consistency checks on data (Host PC). A consistency check of the data is performed in the
host. This operation is completed before the actual processing begins.

(4) Downloading of data (PC - DSP). Downloading of the data depends both on the data
volume and the data transfer speed. Of these, only the data volume can be controlled. The data
transfer speed is determined by the hardware, which includes data bus width, clock speed, and the
specific machine instructions. The data transfer is also handled by the utility program. Again, all of3 the needed symbolic information can be extracted from the COFF file before this is done.

(5) DSP computation time. Before the DSP can begin actual computations, floating point
conversion is needed between the IEEE-format used in the PC and internal floating point format
used in the DSP (see Appendix C). A substantial speed difference exists between DSP32 and
DSP32C because the latter can perform the conversion in a single instruction cycle. We can expect
that the need for this conversion will be eliminated in future generation DSP's because these
processors are being designed to use the IEEE-type floating point representation [Motorola 19901.
The DSP computation time starts when program and needed data have been downloaded and ends3 when all of the DSP calculations have been completed and data converted back to IEEE format.

(6) Host computation time. This time includes statistical computations performed by the host
i processor.

(7) Uploading data (DSP - PC). In data uploading, most of the same considerations apply that
were discussed in connection with data downloading. However, there are a number of operations that
could be conducted in the DSP to improve the overall speed. For example, if the output data is
meant for display, then the data scaling and conversion to the integer format can be performed faster
in the DSP than in the host. Data transmission requirements could also be reduced if the3 experimental data can be expressed as 16-bit integers.

(8) Graphics (PC - Monitor) or (DSP - Monitor). In the initial design, all of the graphics display
operations are handled by the host. It is, however, possible to use a different workstation
architecture in which the display subsystem is driven directly by the DSP. This approach will improve
the display speed.

I 8.1.4 Overhead Evaluation

For all the overhead factors listed above, the DSP computation must compensate by being
the bottleneck (i.e. T, > T, .). To achieve the greatest improvement in processing speed, it
is essential to reduce the overhead as much as possible. We have determined that very little cost is3 associated with these factors for our test cases.

3 '. that all of the needed information is available in this file, such as absolute locations and block size.

61

I

8.2 Low-level Performance 3
8.2.1 Optimized vs. Compiled

To evaluate the performance of the optimized DSP library routines, comparisons were made
between these routines and the code generated by the DSP C compiler. Table &1 gives an overall I
view of how the different implementations of the MAC routine (see Section 5) compare.

Optimized Compiled using Compiled using
Code Pointers Arrays 3

Code Size 20 bytes 34 bytes 37 bytes

Number of 2N + 18 11N + 29 26N + 17
Instructions _

Table 8.1 MAC routine implementation and performance. 5
The two compiled versions given in the table were coded in an attempt to obtain an optimized

compiled version of DSP code. These routines do not include the variable array incrementing I
capability. DSP source code for the optimized MAC instruction can be found in Appendix A.

Table 8.1 shows that considerable improvement can be obtained through optimization of these 3
small routines. In most cases it was found that the DSP C compiler creates approximately 11/2 to 3
times more code than the optimized routines. This extra code usually results from added overhead
and including precautionary nops.

The best test of performance is comparing the number of instructions that will actually be
executed when the routine is called. When the loop variant N is large (ie. N > 100), the optimized I
routine will executed more than 5 times faster than the routine using pointers, and approximately 12
times faster than the routinc using arrays indices.

In addition, the optimized routine is more powerful than the other two routines given because
it provides a variable address incrementing capability for all three arrays, as opposed to a constant
increment of one in the compiled routines. By compiling the C code given in Appendix A for the
MAC routine, we can include such options. The result is that the DSP C compiler creates even more
overhead. The code size is approximately 3 times greater than the optimized code, while the
execution time is more than 18 times greater for N > 100. i

FLOPS. The number of floating-point operations per second (FLOPS) is used quite often
in evaluation of computing performance. Table 8.2 shows the peak performance of two widely used
BIAS routines. These peak values will only occur for N very large, more realistic values are slightly
less than those given in the table.

I
62

I

I

SAXPY SDOT
(MFLOPS) (MFLOPS)

DSP32 - waits 2.67 3.2

3 DSP32 - no waits 4 4

DSP32C - waits 12.5 16.67

3 DSP32C - no waits 25 25

3 Table 8.2 SAXPY and SDOT performance.

These results are similar those given for the same BLAS routines in [Harrod 1987]. The
results show that DSP performance approaches the performance of mini-supercomputers. These
performance results can only be obtained by eliminating wait states, and using optimized routines.
Once compiled DSP code is introduced, the performance measurements degrade, but are still much3 better than conventional microprocessors.

Floating-point instructions. The major advantage the DSP has over conventional
microprocessors is that it can execute a floating-point instruction in one instruction cycle, equivalent
to 4 clock cycles. Even by including a math coprocessor, conventional microprocessors still require
considerably more clock cycles to complete a floating-point instruction. For example, the multiply-
accumulate instruction in the DSP32 operating at 16MHz will only take 4 clock cycles (6 if wait states
are included), while it will require approximately 1000 equivalent 386-processor clock cycles for a
386/287 combination running at 20MHz".

,9Cy~cle time for the benchmarking system was in equivalent 386 (20 MHz) clocks since the 287 coprocessor
was running at 8 MHz.

63

I
Turbo Debugger Log sdotl: if (r3-- :-0) goto sdotl U
CPU 80386 aO - aO + *r2++r16 * *4++rl 7

cs: 1922 B85EFA mov bx. [bp-6] _

cs:1925 D1E3 shl bx,1
cs: 1927 D1E3 shl bx.1
cs:1929 035E0A add bx,[bp+OA Lst]q 8.2 SDOT inner loop, DSP code.
cs: 192C CD3507 fid dword ptr[bx]
cs:192F 880F Mov bx.di
cs:1931 D1E3 shl bx,1 I
cs:1933 D1E3 shl bx,1
cs: 1935 035E06 add bx,[bp+06]
cs: 1938 C03507 fid dword ptr[bx]
cs:1938 CD3AC9 fOUip st(1),st
cs:193E CD3546FC fid dword ptr[bp-041 m
cs:1942 CD3AC1 faddp st(1).st
cs:1945 CD355EFC fstp dword ptr[bp-04]
cs:1949 CD30 fwalt
cs: 1948 037E08 add di,(bp.08]
cs: 194E 88460C iov ax. [bp+OC]
cs:1951 0146FA add [bp-06], ax
cs: 1954 46 Inc Si
cs: 1955 387604 Cup si.[bpi>04]
cs:1958 7CC8 ji 1922

Listing 8. SDOT inner loop, 80x86 code.

Listings 8.1 and 8.2 compares the 386W287 assembly code" for the main loop of SDOT with I
the DSP assembly code2". In this example it is easy to see that the number of assembly instructions
is much less in the DSP. Furthermore, the DSP register transfer language style appears much more
readable than the 386W287 mnemonics.

From the reference manuals for the 386 and 287 processors, we find the it takes 3
approximately 1062 clock cycles to complete one loop of the SDOT routine. In contrast, the DSP32
will take 8 - 10 clock cycles to complete the loop, while the DSP32C will only take 4 - 6 clock cycles.

A similar performance improvement occurs when trying to optimize the C code for Homer's m
algorithm (see Appendix A). Listings 8.3 through 8.6 demonstrates the evolution of the DSP code
optimization process and gives a comparison against the PC 80x86 assembly language code. Listing
8.3 shows the optimized C code for the algorithm that relies on pointer addressing. Listing 8.4 shows I
the DSP code compiled from Listing 8.3. The much more compact Listing 8.5 gives the hand
optimized DSP code. As a comparison, Listing 8.6 gives the substantial 80x86 code compiled from
the C code of Listing 8.3. I

0 A 386 C compiler was not available during this stage, so that the 8086/8087 compilation mode was used.
We do not expect much of a difference in either mode.

"br Note that in Figure 8.5, the DSP automatically does the next instruction after encountering a conditionalbranch.

64 I

float HORN (N, CDEF, X) global HORN
int N; HORN: 014-04 -l12
float CDEF[J, X; al - *r14-4r19 1' X input '

r3 - *rl4..r19 /* CDu '
register int 1; r2 - *r14++r19 /* N S
register float horn, *coof, x; aO a r+

r2 - r2 - 3Icoef -COEF; horni: nap
x a X; if (r2- :,-4) got* hrI
horn a coef+4; aD ar3++ + aD * a
i - N -3; horns: return (r0B)
do nap

horn - 'csf.++ +hoan x;

return(horn);

) ~Listing 8.5 Optimized DSP code for Homer's algorithm.

Listing 8U Homer's C code. HORN: float HORN (N. COEF. X)
cs:OlFA 55 push bp

________________________cs:0lFB 88EC nov bp.sp
cs:O1FD 83ECOS sub sp,0008

.global HORN cs:0200 56 push si
HORN: cs:0201 57 push di
*rl4+. - r03 cs:0202 CD394608 fid qword ptr~bp.08]
*rl4+. a 0 cs-0206 C0355E08 fstp dword ptr~bp.08]
*rl4++ - a2 -a2 cs:020A C030 fwait
*r1 4+. - a3 - a3 HMOR8: cool = COEF;
nop cs:020C 887606 nov s14Cbp406]
02 r =r04 -20 HORN#9: x -X;
r02 - *rl2 cs:020F 88560A nov dx, (bp+OA]
ri - r04 - 24 cs:0212 884608 nov ax.[bp.+08]
a2 -* rl cs:0215 8956FE nov Cbp-02].dx
a3 - *rl2++ cs:O218 8946FC nov (bp-04].axIri = 0l4 - 16 HORN#lO: horn a *coef+q+;

rl= r cs:021B 885402 nov dx, (si.02]
nap cs:021E 8804 nov axd[sl]
r13 ari - 3 cs:0220 8956FA nov (bp-06],dx
L 15: cs:0223 8946F8 nov (bp-O8].ax
a3 - rI2.4.+a3 a2 cs:0226 83CB04 add si,0004

nop ~HORN#ll: la-N -3;
114: cs:0229 887E04 nov di,(bp.404]
if Cr13- ý1- 0) gato 115 cs:022C 83C7F0 add di.FFFDInop HORN#13: horn - *ce+ + horn * x

Li13: cs:O22F C03546F8 fid dword ptr~bp-08J
aO a a3 cs:0233 CD3546FC fid dword ptr~bp-04J
goto L12 cs:0237 CD3AC9 fnulp st(l),st
nap cs:023A CD3504 fld dword ptr~si]

Li2: cs:0230 MUMAC faddp st(l),st
014 = 014 - 12 cs:0240 CD355EF8 fstp dword ptr[bp-08]
rl3 - *rl4++ cs:O244 CD3D fwait
r12 - *rl4+. cs:0246 83C604 add si.0004Ia2 - *r14-4+ HORNI14: while (1-- >- 0);
a3 = *rl4g.. es:0249 8BC7 nov ax,di
return (r08) cs:0248 VF dec di
r14 = 014 - 12 cs:024C OBCO or ax,ax

__ __ __ _ __ __ _cs:024E 700F jnl HORN#13 (022F)
HORN#1 5: return(horn);

cs:0250 CD3546F8 lid dword ptr(bp-O8]

Listing 8.4 Compiled DSP code. HORN#16)BOjp HRI6C26

3 Listing 8.6 80x86 code for Homer's algorithm.

65

U
8.2.2 Summary of the Statistics Workstation Low-Level Routine Performance

Appendix E and Table E.1 gives information on the execution of the low level BLAS and
BSAS routines provided in the statistics workstation library. The code for these routines has been
optimized to provide the best possible execution times. The information in the table was formulated
from DSP source code and by using the DSP simulator, which provided a profile of the code.

8.3 Results of Computation-intensive Algorithm Comparisons]

The test cases described below were chosen to be a representative sampling of computation- 3
intensive statistical methods. Most of the modules were coded in the C language for maximum
portability between the PC and DSP. As the C compiler was not available during the early course
of this effort, several of the examples were written in DSP assembly language.

In general, we observed that hand-coding in DSP assembly language and using BIAS and
BSAS routines within a C environment produced similar performance figures. These were usually
well above the performance of the strictly C written routines. However, properly written C routines,
using incrementing pointers and other methods, were able to routinely improve the performance by
50%.

The timing for each case was against a PC with and without a coprocessor. Timing steps 4,
5, and 7 in Section 8.1.3 were used in measuring DSP performance while step 6 alone was used in
gauging PC performance. Figure 9.4 shows the performance improvement of the various algorithms. I
The BSAS and BLAS routines used for several algorithms are given in Table 4.1. As discussed
further in Section 9, including the low-level routines improved performance greatly. 3
8.3.1 Correlation coefficient (bootstrapped). i

program CC

This test case was based on the example by Diaconis and Efron [Diaconis 1983] for illustrating 3
the bootstrap technique on a relatively simple statistic, the correlation coefficient in Equation 8.1.

E (Xi i) y - 5')3
r =Eq.(8.1)

Xi _ I7)
For testing purposes, the data set of the above reference (GPA and SAT scores from 15

students being admitted to various law schools) was used. By today's standards of PC computing
power, calculating several hundred bootstraps from this particular sample is not too formidable a task
[Noreen 19891. However, as the number of parameters or cases increase beyond this level, the
computation time will increase correspondingly. For this reason, the development on a DSP was I
deemed worthwhile. I

66!

I

Since this routine was coded in DSP assembly language, we expected the maximum speedup
over the PC version. The random number generation was provided by the ran routine in the AT&T
library.

Inlput nu•ber of bootstraps a 3UIAKL_.
4.000

A-C
3.

*23 I

* 1 :3 .1111 -.............. r ---.

(• s .s ".....".....i......... t : t ".......--- ... " -,
S .0 '

0* .

DSP Coefficient C * E.G -10 .006 .002 .3002 .00 0.0~
STable Go Change : N• i Sre File O a

Figure 8.2 Correlation coefficient bootstrap display.

,For the law school data set, we introduced a third random variable in which to compare the
correlation coefficient. The results of a simulation of 30,000 bootstraps on this sample is shown in
Figure 8. The GPA is designated A, the SAT score is B, and random number is C. We expect high
correlation between A and B, but not between A and C or B and C.

The timing for 100 bootstraps for both the PC and DSP is shown in Table 8.3. As can beI observed, the performance improvement over the coprocessor configured PC is approximately 30
times. For larger data sets, the improvement is more substantial, increasing to 35 times for a set of3 40 cases. This is due to fewer calculations of the square root compared to multiply and accumulates.

8.3.2 Multiple linear regression using SVD (bootstrapped).

"program SVD

Singular value decomposition (SYD) is a powerful and widely used technique for solving least

67

I.X G :.....;...;.....•...* ;.... ;.....;....

I'1 I

386 3861287 DSP32

5.55s 1.6s 0.052s I
Table 83 Timing for bootstrapped correlation coefficient.

squares problems. Its power stems from the ability to produce solutions for cases when equations are
very close to singular. For an overdetermined system, SVD produces the best approximation in the
least squares sense, while in the underdetermined case it produces the smallest values in the least I
squares case.

Two sources were referenced when creating the SVD routine, the first being the UNPACK 3
User's Guide [Dongarra 1979] and the other being Press [1986]. Both sources contained routines for
SVD coded in Fortran and C respectively. The two versions are similar in some respects, however,
the UNPACK version was much more complex due to the variety of decomposition options given U
to the usern.

The routine for singular value decomposition given in [Press 1986] performs decomposition 3
on any MxN matrix, where M is greater than or equal to N. The routine decomposes the matrix into
three matrices, returning two orthogonal matrices along with one diagonal matrix. The size and
complexity of this routine was much less than LINPACK's SVD, in addition, the routine was provided
in C code. For these reasons, this routine was chosen to be coded on the DSP.

The original format for the SVD routine was inadequate for easy compilation to DSP code,
and changes to the code had to be made. Originally all arrays were defined with 1 as their initial
starting index, and all loop variants began from 1 and ended with N. Thus, to be consistent with the
BLAS/BSAS applications, all array indices and loop variants were adjusted to range from 0 to N-1.
In addition, all dynamically allocated space and 2 dimensional arrays were converted to row major I
dimensional arrays for use in DSP code.

During coding, comparisons were made with the LINPACK version to include as many I
BLAS/BSAS routines as possible. All of the BLAS routines used in the LINPACK version are also
used in the coded version, excepting of SSWAP. In addition to these subroutines, nre following
subroutines were also included: SCALCPY, SASUM, FILL, SCOPY.

Two separate versions of SVD were used to compute the regression coefficients of the
Longley data set found in [Wetherill 1985). The first version was the original [Press 1986] version I
with no BLAS or BSAS routine, the other was the optimized version using the library routines. The

data was passed to SVD as a 1607 matrix, and the results of the decomposition were passed to a
back-substitution routine to determine the regression coefficients. The coefficients calculated by both I
the C versions and DSP versions agreed very well with the expected results (see Table 8.4).

I
2 The routine found in LINPACK contains a number of parameters which allow the user to select the format

of the decomposition. Because of its size and complexity this routine was not chosen to be coded for the DSP.
However, it was used as a reference for implementing the BLAS/BSAS routines. U

68 I
U

regression Exact SVD (DSP) SVD (386 single-

coefficients I I precision)

x1 15.061872271373 15.0748 15.0706

x2 -0.035819179292 -0.0358134 -0.0358197

x3 -2.020229803816 -2.02015 -2.02022

x4 -1.033226867173 -1.03323 -1.03321

x5 -0.051104105653 -0.0511362 -0.0510876

x6 1829.151464613551 1829.04 1829.12

Table 8.4 Results of Longley benchmark.

To establish a timing
comparison, the same data set was
bootstrapped 100 times to 2oo 9

determine the variability of the IO1
regression coefficients. Additional ISO
routines were used to perform the 140

bootstrapping, such as, ran and 120
bootstrap. The results of this 1,oo
execution timing are given in Table a08.5. 60 4

40

Because of additional 2!0
overhead, this table does not give an 0 804

accurate comparison of the SVD 386 386/287 DW

routines themselves. However, the m ikno10 C M B.AS/BSAS

table does supports the use of
BLAS and BSAS routines as a Table 8.5 SVD timing.
means to further improve the speed
of the DSP coded routines.

8.3.3 Autoregressive model (bootstrapped).

program AR

Bootstrapping an autoregressive model can lead to an estimate of the predictive error or error
in the coefficients if did noise is assumed [Efron 1986]. For this method, the residuals or noise term
from the model (e in Equation 8.2) must be bootstrapped.

For this example, a maximum entropy method-based, autoregression algorithm from [Press
1986] was converted to low-level subroutines for DSP use. Fcr timing purposes, a 15 pole model was

69

I

y. E dj y._, + e. Eq.(8.2)
i=! I

applied to a 300 point data time-series. The coefficients were then used to predict 30 future points
and the prediction error. The timing results are shown in Table 8.6.

386 3864287 [_DSP32

Unmodified C 1120s 252s 37.25s

BLAS/BSAS 1200s 283s 5.33s I
Table 8.6 AR model bootstrapped timing.

Fr"om the speedup, the AR algorithm is ideal for DSP and for low-level subroutine
optimization. This results mainly from a MAC operation with positive and negative indexing that 3
performs an operation similar to a convolution on the data array'.

4 O

25 I
Predcltcec Preict~e di

"---Error I ---- Error

O' =- Data ... - Data

0 20 40 60 10 0W 120 0 3 10 15 20 25

tmf Time

Figuv. 8.3 Time-series data. Figure 8.4 Autoregressive model prediction. I
I

For a smaller data set, taken from [Newton 1988], the results are shown in Figures 8.3 and
8.4. Here, the error is given by the root-mean-square deviations of the bootstrapped predictions.

To make this method more applicable requires modifying the poles of the AR model
coefficients to be within the unit circle. To do this effectively, low level routines that consider

"3 The original unmodified code produced a compile-time error at the MAC stage, the only serious error
observed from the AT&T C DSP compiler. This was eliminated by using the MAC low-level routine. I

70

I

complex number arithmetic may need to be introduced. Fortunately, there are several examples of
DSP routines that use complex number structures [AT&T 19881.

8.3.4 1D and 2D projection pursuit.

program PPI and PP2

A projection pursuit (PP) algorithm as
described by [Friedman 1987] was tested for +
DSP applicability. The PP algorithm was Y ++
designed to detect departures from normality of ++ "".

multidimensional data cloud. The results of
the algorithm give one or two-dimensional +I/, +//\"
projections of the data that exhibit strong + +
tendencies for clustering (see Figure 8.5). _____"-.

Further applications of the algorithm to the
renormalized data give new projections. X

The blocks of the algorithm are shown INN
in Figure 8.6 at the end of this chapter. It
features a quasi-Newton optimization technique
[Fletcher 1987] for minimizing the projection
index along with orthonormality constraints on
the projections, which gives the departure from
normality. At the lowest level of the routine, Figure 8.5 ID projection that maximizes
there are dot products for calculating clustering.
projections, evaluation of error function, and
calculating the projection index and its derivative.

Our main emphasis was on applying the more complicated 2D algorithm. This gave a good
test of the DSP's capabilities as it pushed code size (30K) to nearly the limit of the DSP32 chip (but
not DSP32C). Fortunately, an optimized error function routine was included in the AT&T C DSP
library (the error function routine from Press [1986] was used for the PC version2). Apart from this
routine, the DSP and PC version used the same C code. The SDL for this routine is shown in
Section 7.

The results of the timing tests for both routines is shown in Table 8.7. Since the technique
is iterative and only stops when the error term drops below a certain value, the timing per iteration
is shown. The Iris data set (150 cases, 4 dimensions) was used for testing [Becker 1988].

Not surprisingly, there were departures in the solution paths the PC and DSP version of the
algorithm took to finding a local minimum of the first projection index. However, the final minimum
were nearly equivalent in the two cases (see Figures 8.7 and 8.8 and invert the x-projection), as were

the total number of iterations. In both cases, only the projections corresponding to the first

' Unfortunately, this error function is not very optimized in that it features many levels of function calls to
lower-level routines.

71

I
projection pursuit solution are shown.

386 386/287 DSP32

1D (BLAS/BSAS) 70 s/iter 17 s/iter 0.7 s/iter

2D (BLAS/BSAS) 130 s/iter 32 s/iter 1.6 s/iter i

Table 8.7 Projection pursuit timing.

beta ProleCtlln be'a Ormet tion I

2 *2.5 .0L* " . .. I

0
%

* .5

• "II

0 -. 2 .3 .2

* vl rqlnlca * v q~i cjl ac
* verslCOlOr "verstcOiOr

4 ___________________________ serosdl .5 , , __, , , __... ... _ . . . e,. • se1.aI

2 I 2 -3 *2 -t 0 I 2 3I

aIpha Pro tectlon alpha prolectionmt

SI

Figure 8.7 Projection pursuit result on Iris data. Figure 8.8 Projection pursuit result on Iris data.
386 version. DSP version.

8.3.5 Markov modeling.

program MM

Markov modeling plays an important part in reliability and maintainability predictions, as well
as queuing applications. As such, it is more a probability application than a statistics application. Ithas been included here to test the applicability of DSP's to the integration of linear and nonlinear
differential equations (see e.g. Equation 8.3).

The Markov model solution technique chosen for demonstration is matrix free and relies on I
an adaptive step, 4' order Runge-Kutta integration algorithm. The DSP-version of the algorithm was
written in assembler code to maximize the speed (very few BSAS or BLAS routines are required in

72 I
I

dP(t)

02(t)Eq4893)1 = 11 PI(t) - .P2(), etc.

the algorithm). For most linear problems, the integration proceeds quickly given that the transition
rates are not too far apart. For stiff problems, where the rates vary widely, the integration is slower.
One such application, as shown by the state diagram in Figure 8.9, is in maintenance where the
failure rate (B2=XL) is low but the repair rate (B11=p) is high. The results of the timing are shown
in Table 8.8 for this application.

For this particular problem, roundoff errors are important for long integration times. For
single precision, the accuracy of the result degrades as the ratio between B2 and B1 increases (for
single precision this must be less than -10').

386 386/287 DSP32 2

18i s 496 s 16 s (, state

Table 8.8 Markov model timing. vnr.v,.r,.,, s.ate

Figure 8.9 State diagram for repairable system.

To test applicability of DSP solution for nonlinear Markov model problems, a predator-prey
system was also modeled [Gardiner 1983]. This is an example of a Volterra-type model [Sarkar 1987]
which is known to be very sensitive to initial conditions and coefficients. Figure 8.10 was calculated
by the DSP according to the simple relationship in Figure 8.10. The oscillations observed in this case
allow a comparison to the cyclic Lynx (predator) data used in Section 8.3.3 and Figure 8.3 for
autoregressive prediction. These curves demonstrate that the DSP is useful as a general-purpose
scientific computation tool where both statistical forecasting and modeling/simulation techniques are
needed.

73

1500J

1000
500~

' IPrey

C a 4

Fgr .1S atdiga fo peatrpe sysem

8.X3. Itrtv tehiqe (aca' & SOR)

Y =,I, A f, A am E.84

8.5 wher a isteiett ati of siz a n 'Me a loih reursagodiiilgus fBt

covegequcky.Ths s ivn n or deai inth a bv -Preyefrece

a a a a a S a a a 4

=B1 = (2 1 - Bi A) Bi, B E Rm Eq.(8.5)

The timing results for inverting a matrix of numbers taken from the Longley benchmark are
shown in Table 8.9. Approximately 50 iterations were required for the results to converge, while 100
were taken for timing.

II386 386/287 DSP32

Unmodified C 41.19 s 9.78 s

BLAS/BSAS 40.9s 10.17s 0.146s

Assembler - 0.13 s

Table 8.9 Iterative matrix inversion timing.

I When comparing this technique against conventional techniques for inversion (such as SVD),
the iterative techniques perform slower. Furthermore, unless pre-computation data centering is
applied, the DSP solution accuracy suffers.

The strong advantage tha' the DSP technique offers is the speed of computation. This is not
surprising since the algorithm is rich in matrix multiplies and other BSAS routines. This allows the
DSP to run at peak efficiency throughout the routine.

program SOR

Gauss-Seidel iteration is a useful technique for solving nonlinear sets of equations, which may
occur in projection pursuit regression or other methods. An improvement on the technique is given
by the method of simultaneous over-relaxation (SOR).

Listing 8.7 shows a C code fragment taken from the inner loop of an SOR algorithm taken
from Press [1986]. The algorithm operates on a two-dimensional array u and equation coefficients
a, b, c, d, e, f. As written, the code is not optimized for DSP use since too many array indexing
references are required. To optimize this code, Listing 8.7 is modified to the code fragment in Listing
8.9, which uses pointer referencing. The compiled DSP assembly language multiply-accumulate
portion of this code is shown in Listing 8.8. Note th3t by converting the equation coefficients (a -
f) to an array A further condenses the code and thus makes it highly optimal without resorting to

* tedious hand assembly coding.

75

I

if ((jl)22 -. r.) 42)
rasid-a~j][]%u[J+1]ll] if (((,j+1)&1) -. (41)).b[(J](1]%[J-1](1I] I

[cjJ][1]J[J][1+1]; resid * A.++. +;
r'sid +- d[j][]uJ[J][1-1] rmaid *o.- "A2a. * 'U2o;44[J][1]J][[J]IJ]-f(jJ[1]; ,uid 4- *A+ U3.
anor~m ÷- fabs(restd); reid *= A++ 0 OU4.•.;

u(j][1] -a omega0'rsd/e[j][1]; riid +- *A. O WU1;
} vrsid -- *A-;

anom += fabs(resid);
'US++ -+ onsga*n'sid/(*A++);
*A++;

Listing 8.7 Original SOR C code I
elseI

A +- 6;
U1 += 1;

&2= rlO*+ * *r9 U2 +- 1; I
a2 *a2 + 'rlOO. * *re++ U3 +- 1;

a2 .a2 +'10D++ * *'7++ U4 +- 1;

a2 & .2 + 'rlO.- * 'rG.-e U5 +- 1;

a2 a2 = + rio-.l.H*.r5
&2 a2- 'riO-1-

Listing 8.8 DSP MAC portion of SOR Listing 8.9 Pointer converted SOR C code

Without going into detail about the statistical application of the technique, we can also demonstrate
the performance figures for this code. Table 8.10 compares the PC and DSP performance for a
I lx1 I array and 1000 iterations. 3

386 386/287 DSP32I

76.7 s 18.6s 1.21 s

Table 810 SOR timing. I
8.3.7 Density estimation.

program DE I
Density estimation as discussed in [Silverman 1986] is a recently introduced method that

benefits greatly from improvements in computer performance and algorithm enhancements. This I
technique uses an FFT to simplify the convolution of the density histogram with the windowing kernel
(see Equation 8.6). It has applications in smoothing a bootstrap and in empirical Bayesian
calculations. I

For this example, the algorithm in [Griffiths 19851 was converted from FORTRAN into C and
uses the corresponding BLAS/BSAS routines. In addition, the FFT routine was provided by the DSP

76

I

I
P(x) = ff(x-t)w(t)dt Eq.(8.6)

For this example, the algorithm in [Griffiths 1985] was converted from FORTRAN into C and
uses the corresponding BLAS/BSAS routines. In addition, the FFT routine was provided by the DSP
applications library. The PC-version FFT was adapted from [Press 19861. The windowing kernel was
assumed to be normal with a user adjustable width.

The results of the timing analysis are given in Table 8.11 for a 256 point FFT and 250 data
points. A total of 50 iterations were measured to improve accuracy of timing.

I
386 386/287 DSP32

164s 40s 1.6s

I Table 8.11 Density estimation timing.

The speed advantage provided by the DSP resides in the FFT routine. In particular, by
removing the normal kernel, a speedup of 50% is seen. Other kernels, such as the Epanechnikov
kernel [Silverman 1986], will improve performance further.

Density estimation also has some applications in areas where fast data collection is needed.
Figures 8.12 and 8.13 shows samples of density estimates of noise being introduced through the DSP
board's analog audio input. The data is updated several times a second with the PC handling all of

the graphics.

I
I

I 77

I

mirodu0 .05

Figure 8.12 Density estimation of audio-frequency noise. Large window.

windw-O .0125 I'.J \\ U
I

Figure 8.13 Density estimation on audio frequency noise. Small window.
I

8.3.8 Survival analysis (Kaplan-Meier estimate).

program SUR

Nonparametric survival estimators such as the Kaplan-Meier algorithm (see Listing 8.10) have 1
often been used in computation-intensive applications such as bootstrapping [Efron 1986, Grier 1988,
Akritas 19861. In the latter reference, much work was done on vectorizing the low-level code so the
algorithm can be run efficiently on a supercomputer, thereby saving valuable computer time2.

The optimization of the
algorithm for DSP use has little KM(1) - (ALIVE(l) - OIED(1)) / ALIVE(l)
resemblance to that described in DD10 1oqI = ~-) 2. (.M.IEI -BIDI) SgEI

[Grier 1988]. For one, vectorizing is 10 "1) - OKI-1) * (ALVE(I) - DIEDI)) / ALVECI)

not warranted in the DSP. It not
only is difficult to do with the Listing 8.10 Kaplan-Meier algorithm.
present DSP capabilities, but it also

'' Even then, for the survival data they analyzed, the computation time amounted to 6 hours. We used a
different data set for timing.

78

I

adds considerable memory overhead. In the supercomputer example, B copies of the data set,
corresponding to B bootstraps, were stored in memory before the estimate was performed. For large
data sets, and B > 100, this can become a large memory requirement. For supercomputers with
gigabytes of storage and no cost to the user apart from CPU time this is a cost effective way to
proceed.

SFor the DSP,
however, we .approach the void kWiv(npts, censor, result)

problem differently. The fot cn .sult
technique that we use to i
optimize the Kaplan-Meier ,itsrfloat *oideult, ol.., rmin;
estimate for DSP use is to remain - (float) npts;
convert the divisions (Listing oldresult - result;

npts -= 3;
8.11) to multiplications and *rualt++. - (one - *censor++ / remain--);
then use the MAC type do * + dresult+ (arm - *nsor++ rmin-);'remult-4- = od'ml+ oe- • /mn-)
instructions to do the while (npts- 3- 0);

multiplications with
automatic indexing (Listing
8.12). Since a division is
more time consuming than a Listing &81 Kaplan-Meier coded with division.
multiplication (for both a
DSP and conventional microprocessor), all the divisors are stored in an array that is precomputed and
then used over the many bootstraps.

void km(npts, censor, result, divisor) void generatediv(npts, divisor

int npts; int npts;
float censor[], result(], divisor(]; float divisor[];
{ {

register float *oldresult p, *censor p, register int i;
*divisor p, *result~p;

register float one=1.O, temp; for (fil; i:•.npts; i++)
register int count; *divisor++ = 1.0 / (float) i;

oldresult-p - result;

censor p - censor;
divisor p = divisor;
result p = result;
count - npts - 3; void km est(npts, data, censor, result)I result p++ = one - *censor p++ * Sdivisor p--; int npts;
do float data[], censor(], result[];{ {

t = = one - *censor lp-i * *divisor_p-; float divisor[SIZE];I rsult..P44 = ldrssultp-4 * generatediv(npts.divisor);
while (count- >= 0); km(nptscensorresult,&divisor(npts-1]);

Listing 8.12 Kaplan-Meier coded with multiplication.

After compiling this to pseudoassembler language we can further optimize by eliminating
nops. Table 8.12 gives the timing for 100 loops of the code in Listing 8.12 (computational results
were the same for all three processors). The input data set contained 62 cases, (taken from [BMDP

79

1985] p.562). In a more realistic example, which may involve bootstrapping and factorial design as
Grier demonstrated, we do not expect as great a performance improvement.

386 386/i287 DSP3E2
2.6s 0.6s 0.Ol3

Table &12 Kaplan-Meier timing.

8.3.9 K-means clustering (bootstrapped).

program KV

The K-means clustering algorithm is a simple technique used for separating a set of N cases
in P-dimensions into K clusters. It involves the steps of initially separating the cases into a set of
seed clusters, computing the cluster means, and then rearranging the cases to the closest c~uster mean
[Hartigan 1985, BMDP 1985]. This repeats until no further changes are made and the within-cluster
sum-of-squares is minimized, and another value of K can be chosen.

As the number of dimensions increases, the algorithm loses effectiveness due to a large search
space and the possibility of encountering a local minimum. Bootstrapping applied to the initial data
set allows estimates of the variability of the K-means method to be made. This, however, will
increase computation time greatly (9 hours for 250 6-D patterns on a superminicomputer) [Jain 1988].

We have adapted the FORTRAN code in [Hartigan 1985] to C with the BLAS/BSAS
extensions to test the performance the algorithm in a DSP environment. The lowest level of the
algorithm is dominated by calls to the DIST function. This returns the Euclidean distance squared
between any two points (see Appendix A). Since for two-dimensions, the function call overhead is
a large percentage of the computation time, we expect that the computation speed will improve for
higher dimensions. This is shown in Figure 8.14 for NxP=constant.

[386 386/287 DSP32

Unmodified C 64.6 s 16.3 s 3.68 s

BLAS/BSAS 72.6 s 18.4 s 0.77 s

Table 8.13 K-means timing.

The results of a timing comparison between the DSP and PC performance is shown in Table

8.13 for P=16 and N=28 (computational results were the same for all three processors).

This set of cases is not a good application of K-means (the number of points is too small

80

K-means clustering speed comparison
DSP vs 386

16 DSP opt

386/287 opt

8386 opt-.2

I C
- DSP no opt

4 . "386/287 no opt

0 386 no opt

0 10 20 30 40 50 60 70
K-means solutions/sec

Figure 8.14 Performance versus dimension of K-means solution space.

compared to the dimension), however, for larger sets of data, the speed advantage becomes
considerable.

8.3.10 Kendall's tau

program KT

Kendall's Tau is a nonparametric correlation technique which is useful when the probability
distribution function from which data is drawn is not necessarily known. Nonparametric correlation
replaces the data values by their rank in respect to all the other data. The major advantage of such
techniques is that when a correlation is present nonparametrically, then it really exists [Press 1986].
The disadvantage, however, is that since it discards information by producing a rank order, it may
sometimes fail to find an existing correlation.

Unlike other nonparametric correlations, Kendall's Tau does not require that the data be
sorted and ranked. Instead it uses the relative ordering of ranks. This is done by comparing all pairs
of data points, checking the relative ordering of ranks, and incrementing and decrementing counters

81

on rank tests.

The source for the Kendall's Tau algorithm was taken from [Press 1986] and modified to allow
the DSP compiler to create more efficient code. The major modifications were the use of pointers
instead of arrays with indices. Additional modifications replaced the "for" statement with the "do
while" construct to eliminate loop overhead.

Although these modifications helped the DSP compiler create efficient code, an extra step was i
taken to manually optimize the DSP assembly code. This step involved eliminating unnecessary nops
and interleaving unrelated instructions. Through this process the original code performance was
improved by 26%.

Table 8.14 shows the execution times
for 100 iterations of Kendall's Tau on the 386/28
different processors. The speedup factor for 386 3861287 DSP
this routine is not as large as others mainly 87s 21 s 2s
because the hand written BLAS/BSAS routines I
are not contained in the algorithm. In addition,
the full potential of the DSP is not being used Table 8.14 Kendall's tau timing.
because the routine contains mostly integer I
operations. Thus we expect this comparison to show mainly the speedup due to the optimized
instruction set and pipeline effects.

8.3.11 Bayesian bootstrap (integration by Simpson's rule).

program BB B

The bootstrap method can be also applied in Bayesian analysis. One of most frequent
criticisms for Bayesian analysis is the use of subjective prior information, while the choice of the error
distribution is seldom challenged. Boos and Monahan (1986) proposed to use a bootstrap method
incorporating prior information which performs well without direct knowledge of the error
distribution.

The first step is to estimate the distribution function of the data using the empirical
distribution function F, of the observations. Next, generate B random samples of size n from F,, and
calculate the statistic of interest from sample j. Then from the B simulated estimates of the statistic
of interest, compute the kernel density estimator. Finally, calculate the posterior distribution for the
statistic of interest by using Simpson's rule as a numerical integration method.

For faster computations, we employ the Epanechnikov kernel [Silverman, 1986] instead of
using the normal kernel for the density estimation. This increases the DSP performance advantage
over the PC implementation by a factor of 5 times. If the normal kernel is used, less advantage is I
realized because of the frequent subroutine calls' and slow function evaluation, as the exponential
calculation is done in software.

6 To show the flexibility of DSP programming, the Epanechnikov subroutine call was passed by pointer.

82

I

Table 8.15 shows the execution times for Program BB on the different processors
(computational results were the same for all three processors). The evaluation includes 20 bootstrap
replications of the median of a one-dimensional 50 point data set (Example 1 [Boos, 1986]). The
DSP has some advantages over the conventional processor. However, we believe that the DSP will
have greater applicability for multidimensional data since more vector operations are needed.

I386 386/287 DSP32

64.3 s 14.5 s 1.53 s

Table 8.15 Bayesian bootstrap timing.I
8.3.12 Neural networks for discrimination.

I program NN

Neural networks (NN) have received considerable attention lately. Because of their self-
learning capabilities, they have applications to statistics, particularly in situations where trends are not
discernible by other techniques. In this way, it shares some similarities to projection pursuit [Interface
1986]. Neural networks are also computation-intensive as most of the training and learning is the
result of summing and multiplying operations.

The statistical neural net chosen for DSP demonstration is adapted from the probabilistic
neural net (PNN) described in [Specht 1990]. The claim of the PNN algorithm is that it is much
faster than other NN techniques. However, on closer examination, it is very much similar to the
density estimator described earlier with a Bayes decision rule applied for discrimination. Silverman
[1986] describes this approach further. The difference in the PNN approach is that the densities are
not calculated at once, but are calculated (in the neural network approach) by associating each point
with every other point. The density estimator for the PNN assuming a normal kernel is given in

I Equation 8.7.

1 _- x exp Eq.(8.7)

I Our version of the technique uses the DIST function as the only low-level BSAS routine.
The results of the timing tests for the PNN using a normal kernel is shown in Table 8.16
(discriminational results were the same for all three processors). In this example, as in the previous,
the choice of kernel has a large impact on speed.

8.3.13 Euclidean distance measurement.

program CL

This measurement was taken from a statistic used to analyze two-dimensional point

83

I

386 386/287 DSP32

63s 16.3s 0.66s I
Table 8.16 PNN timing. 3

distributions of defects occurring during the semiconductor wafer manufacturing process [Pukite, in
press]. The computation-intensive part of the algorithm is very similar to that of the K-means and
PNN algorithms in that a Euclidean distance is calculated. This is repeated for each pair of defects
observed, giving N(N-1)/2 total calculations. The DSP version of the C code had few low-level
subroutines and so was further optimized by hand. Table 8.17 gives the performance results for
N=430. The speedup over the conventional processor was limited by the lack of true array
operations and the square root calculation.

386 386/287 DSP32

137s 31.1s 2.75s 3
Table 8.17 Euclidean distance measurement.

8.3.14 Stochastic simulation.

program ST

This was included to test a reverse polish parsing routine that may be applicable for user-
defined Monte Carlo simulations. Designing this routine within the DSP presented no real problems.
Unfortunately, since the parser is rich in integer and string type computations it is not as suitable for
DSP use. In addition, the coprocessor version did not show as large a speedup as the other
algorithms. As an alternative approach, efficiency can be improved by compiling these operations
before runtime with a stripped down compiler [Korn 1989].

386 386/287 DSP32

45s s . 15s 1.4s s

Table 8.18 Parsing of formulas timing. 3
8.3.15 Hypothesis testing

There are several other computation-intensive statistical applications that we have
implemented on a DSP. In particular, [Noreen 1989] gives several examples of programs featuring
shuffling, Monte Carlo simulation, and bootstrapping for testing statistical hypothesis. Many of the

84

I

programs feature statistics that are specifically designed for the data at hand. In this case, new low-
level subroutines need to be implemented that may not be among those listed in Appendix A. The
performance of one such example, given by Program 2.4 in [Noreen 19891 is given in Table 8.19 along
with that Noreen's performance evaluation on a Macintosh II system under different program
compilers.

386 386/287 DSP32 Mac II, Basic Mac l, Fort Mac I, Pasc
[Noreen [Noreen [Noreen

I 1 1989] 19891 1989]

549s 125s 6.66s 214s 105s I 559s

Table 8.19 Shuffle statistic timing.

85

I

Figure &6 Tree diagram of two-dimensional projection pursuit algorithm.

8I

C-T 8

0 E Ui

o • I
il -,l•' ! I I - I

4J 72

U..

I..I •.•II..

> Ii

>I
AISI

Ai 8 6
86!

I
I

I

*I 9 SW PERFORMANCE/COST EVALUATION

I This section presents a detailed statistics workstation performance and cost evaluation. This
evaluation is based on statistical program benchmarking data presented in Section & The key tradeoff
factors include hardware availability, total workstation cost, and expected workstation performance.

Before proceeding with the details of performance and cost evaluation, we will present our
rationale for selecting the DSP as a processor. Since DSP's are not used for conventional statistical
computations, their use in statistical applications is often questioned. These key questions are usually
phrased as:

o Why not use a conventional high-speed processor instead of a DSP?
o Why not use a numeric coprocessor instead of a DSP?
o Is the extra effort needed for developing DSP software worth the increase in development

cost?
o What is the overall cost-effectiveness of the proposed statistics workstation and how does it

compare to a distributed network of computers or other parallel processors?
o How will the future advancements in microprocessor design affect the use of DSP's for

statistical computations?

Answers to these questions are presented in this section, starting with an overview and
followed by a detailed discussion.

9.1 Conventional Processors versus DSP

The majority of the conventional microprocessors have been designed primarily for integer
and string computations. Only the most recent microprocessors, such as Intel 486 and Motorola
68040, incorporate floating point capabilities.

The advantages of using conventional microprocessors include their wide availability, low cost,
and excellent software support. However, conventional microprocessors are not only slow in
performing floating point computations, but also in supporting advanced array indexing operations.
The slow floating point processing speed is due to the need for software emulation of floating point
operations (if a coprocessor is not available).

DSP's, on the other hand, have been developed for supporting fast floating point operations
and concurrent array indexing. Their floating point processing speed is at least one order ofmagnitude higher than that of the 486 microprocessor (which operates at -1 MFLOPS).

3 9.2 Math (Numeric) Coprocessors versus DSP

Widely available math coprocessors include the 80x87, 60881, etc. They are offered as options
to the basic system at an extra cost of several hundred dollars, depending on the system clock speed.
The earlier coprocessors (8087 and 80287) offer a 3 to 5 times speed improvement over the stand-
alone 8088 and 80286 CPU. The more recent coprocessors offer a 10 times advantage for the 80387
and up to 20 for the 80486 (with internal 487 floating point capability). This improvement, however,

87

can only be achieved when a substantial number of floating point computations are involved.

Although the math coprocessors
perform floating operations in hardware, they o n o processor
need many clock cycles to perform the basic Host CPUlsirsC poc sr
floating point operations. In addition, a math
coprocessor must communicate with the CPU to
gain bus access before it can begin to perform
an operation (see Figure 9.1). Thus, the host DataAddress bus
processor must grant the bus to the coprocessor
and then initiate the floating point operations.
DSP's, on the other hand, can perform floating
point multiplication and addition in a single
instruction cycle. This capability leads to the Figure 9.1 Math coprocessor data path. I
speed improvement quoted above.

In addition, one is restricted to a single coprocessor add-on per conventional microprocessor.
To further increase speed, the only route to take is to enhance the performance or clock rate of the
conventional microprocessor/coprocessor combination. This is in contrast to a multiple DSP
approach.

One key advantage of a numeric coprocessor is the ease of integration, as most of the major
language compilers support standard numeric coprocessors. Many higher language compilers also
have a feature to detect the absence of a coprocessor and evoke emulation during runtime. Another
advantage of numeric coprocessors over the present-generation DSP's is their double precision
floating point computation capability. 3

Thus, if extensive floating point operations are needed or a multi-processor environment is

envisioned, then the DSP provides a more cost-effective solution. i

9.3 Digital Signal Processor Tradeoffs

A detailed discussion of the available DSP devices is provided in Appendix D. Although
these devices differ in their physical implementation, they are very similar with respect to the
available floating point operations. 3

The DSP architecture borrows heavily from the supercomputer architecture. Some of these
features include pipelining, multiple address and data buses, etc. They can also be considered as a
reduced instruction set computer (RISC) processor specialized for highly repetitive operations [HPS
1990, p. 261. Because of their unique architectures, DSP's have certain advantages and disadvantages
when used in computational applications. These must be clearly understood if an optimum
application of these devices is desired. Even though the disadvantages of DSP operation may
outnumber the advantages, the performance issue is still key. This is similar to a supercomputer
calculation, which has speed and memory advantages, but little else. If the user needs these
capabilities, the high-performance system is still the best choice.

The statistics workstation in the end will not work as a single processor. It will combine the

88

I

strengths of the conventional microprocessor with those of DSP's to create a very powerful system.
Many of the DSP advantages and disadvantages were mentioned earlier. A summary of these are
presented below.

9.3.1 Advantages of using DSP's

The one overriding
advantage that the DSP has
over conventional 35

microprocessors is its speed 30
in floating point
computations. The low 1 25

price of the DSP gives it a
further cost/performance 203advantage.

DSP's are ideally 10.
suited for floating point
number addition,
subtraction, and 0
multiplication. Further 3.5 4 4.5 5 5.5 6 6.5

advantage is gained with s (OSP32C/0sP32)

these operations if Math fumctios =IStotfctiof]
automatic index
incrementing is feasible. _
Multiply accumulate (MAC)
is the most powerful DSP Figure 9.2 DSP32C speedup over the DSP32 used in this study for
operation. In the DSP32, a variety of subroutines.
one MAC operation
requires 4 clock cycles. If the same instruction was implemented in a conventional microprocessor,
such as 80x86, it would require several instructions, each requiring many cycles. For the DSP32C,
the speed advantage over the Intel 80486/487 is -25 for, this instruction. The more advanced
DSP32C is also much faster for a variety of BSAS level routines than the DSP32 used in this study
(see Figure 9.2).

DSP programming is no more difficult than programming conventional microprocessors with
the support of a high-level support language such as C. DSP's are also satisfactory for logical
operations, with the of majority of these (except for bit operations) supported in current DSP's.

The higher level of the DSP assembly instructions makes it easier to read the code and debug
the program. This is particularly true for mathematical applications. Programmed correctly, many
high-level C expressions (such as multiply-accumulate) will compile to a single DSP instruction. This
is an improvement over the conventional microprocessor.

Finally, whereas the numeric coprocessor requires continuous intervention by the host
processor, the DSP can operate in an autonomous mode after the program has been downloaded.
This means that the DSP can be assigned a particular computation task with full local authority. This

89

1
capability makes it possible to do parallel operations using multiple DSP's, thus improving
performance further. The simplest example of concurrency is simultaneous operation of the PC and
DSP, each running separate tasks. In the master and slave mode of operation, statistical computation
tasks are divided between host and DSP. An optimum mix is needed to achieve the best 3
performance.

An alternate implementation could use the serial data link to communicate between the
individual DSP's. In this case, neither the host processor, nor the data bus is involved in data transfer
operations. Thus, such a system could greatly reduce the data transfer load handled by the host
processor. Through parallel operation, many DSP's can perform specific operations and use the high
speed serial data link for intercommunications.

9.3.2 Disadvantages of using DSP's

The present generation of floating point DSP's are 32 bit machines and as such they use
single precision. To improve computation accuracy we must use techniques such as data centering,
double pass, grouping of variables, centering, and sorting the values preceding the summation [Thisted 1
1988]. Although these operations differ from the conventional set of digital processing operations,
they can be efficiently coded to operate in a DSP. Note that many of these techniques were
developed for use on the early minicomputers which only supported single-precision floating point.
Although the single precision accuracy presents a limitation, many statistical problems do not always
require a higher accuracy because of inacurracies in the initial data values.

Moreover, the single-precision floating point limitation is only a short term problem, as the
next-generation DSP's are already extending floating point accuracy. For example, the Motorola
96002 has extended single precision capability and the Intel i860 uses a double precision IEEE 3
floating point standard.

Operational dependencies of compound instructions (see Figure 6.5) are difficult to handle
in the DSP. This problem, due to the pipelining effect, is not unique to the DSP's as it is also
evident in supercomputers. The key difference is that the delays are handled automatically in
supercomputers, whereas the DSP programmer is responsible for handling the pipeline constraints
due to the lack of automatic delays. The present-day DSP compilers provide delays that are
conservative to avoid any pipeline conflicts.

DSP's are poor for integer multiplications of other than 2. This deficiency applies only to the 1
current generation of floating point DSP's, such as the DSP32. In the next-generation DSP's, such
as Motorola 96002, full integer operation capability will be available, including integer multiplication.

DSP's do not provide direct instructions for floating-point division, square root, and
transcendental functions. These operations must be done in software. When selecting division
algorithms we can trade accuracy for speed. In some applications this tradeoff may be acceptable and I
could be used during the early phase of iteration, with higher accuracy used during the final stages.

DSP's are poor for string and character handling because they do not have special hardware 3
instructions for handling variable length bytes of information. However, many of the elementary
string operations are efficiently coded using the available integer registers. Thus, the overall program
should be structured in such a way that the majority of the string operations are performed by the I

90

I

host processor.

The use of DSP's require more complex error checking because errors can also occur in DSP
operations. Fortunately, DSP devices typically provide error flags for both the floating point and
integer processors. Thus, the host processor must only check the status of these flags. On the plus
side, this can be done as the DSP is running to provide a real-time monitor of activity.

The DSP normally does not have its own operating system, because it operates in a slave
mode. However, the flexibility and the range of available instructions do permit a simple independent
operating system to be developed if needed.

The power of the DSP is best demonstrated in those problems where many iterations are
needed. If the computation is relatively short, then it may not be advantageous to download that part
of the solution to the DSP.

9.4 Future DSP Developments

We can expect continuous improvements not only in microprocessors but also in future
coprocessors and DSP's. Faster versions of the current-generation coprocessors are already available.
Some of these versions use less internal microcoding and more direct hardware implementation offloating point logic to increase their speed.

The number of floating
point functions is a function of the
chip size. Since component yield 9 a '

depends on the chip size, the 1989:
tendency is to keep the chip as 19 8 8 moil
small as possible to obtain a 1987

profitable yield. This in turn affects 198s
1985II I

the number of different operations 1984 : * :
which can be done on the chip. 1983

However, as chip manufacturing 1982

techniques improve and feature 1981
sizes shrink, we can expect that new 1980 .

features, such as double precision or 0.01 0.1 10 100

fast floating point division, will be
included in the next-generation DSP - Ar&T D•P32 One m l n 8046/87 11.

devices. Future DSP's will also
support capabilities such as IEEE-
format operations and random
number generation. Figure 9.3 Trend in DSP computation speed versus year. The

top of the line conventional microprocessor is shown for
As an example, an on-chip comparison.

random number generation
capability was to be incorporated by Motorola in their 96002 DSP. However, due to the chip size
constraints, it was not included. Should the random number generation capability be incorporated
in a future DSP instruction set, it may be useful for high-speed statistical computations. This

91

U
generator should meet the basic requirements of random number generation, such as large cycle time
and provide for a highly uniform distribution.

To gain a speed advantage in floating point computations, some of the current DSP's use a
non-IEEE internal floating point format. Therefore, when the DSP communicates data to an IEEE-
standard environment like the PC, a floating point conversion is necessary. To reduce conversion
time, some DSP's, such as the DSP32C, provide a single instruction cycle conversion, while future
DSP versions will probably use IEEE floating point format directly.

We can also expect that some new support operations will be included, such as those needed
for efficient evaluation of polynomials and spline functions. In the Motorola 96002, approximate I
"seed" values for inverse and square root floating point numbers are provided in a single instruction.
Availability of these operations will help to further improve floating point computation speed in those
applications that depend on division and square root operations. I

Besides including floating point units in the next-generation PC-compatible microprocessors,
there are several other microprocessor designs that afford significant speed advantages. These I
include the reduced instruction set computer (RISC) chips. One such RISC chip is the Intel i860.
Not only does it have a high throughput, but it also supports some of the DSP operations, as well
as graphical operations. This processor has internal pipelining similar to those found in the DSP's. 1
It can also support some parallel processing, similar to that found in the DSP's. The i860 appears

to be a good candidate for future statistics workstation expansion.

9.5 Statistical Algorithm Performance Evaluation

Statistical algorithm selection for performance evaluation was based on two factors. First, 3
these algorithms had to be computation-intensive. Second, the selected algorithms had to have a
wide applicability in modern statistical computations. A detailed description of the selected
algorithms and performance results was presented in Section 8.

The selection of performance criteria is not an easy task. On one hand, the selected criteria
should be simple and easily understandable. On the other hand, the selected criteria must lead to 3
an objective evaluation of the system's true capabilities.

The performance factors selected for this study included speed, accuracy, and the size of the
problem. The program optimization can affect all of these factors. The initial performance measures
considered ranged from a simple measure expressing floating point operation timing to a more
complex measure based on simulation results. 3

The advantages and disadvantages of several performance evaluation methods are discussed

below. 3
9.5.1 Analytical Approach

FLOPS. Floating point operations per second is the simplest processor performance measure. 1
Although the FLOPS rating is one of the key factors used in advertising the available DSP

I
92 I

I

I capabilities, the rating is not always a meaningful criteria when applied to a statistical problemzý
We conclude that the only meaningful use for the FLOPS rating is as an upper limit indicating the3 potential peak performance that cannot be exceeded regardless of program optimization.

Computational Complexity. One approach to performance evaluation is based on theoretical
computations. In the past, on the basis of number of instructions such as addition, multiplication, a
reasonably accurate prediction of performance could be made. However, this approach is particularly
difficult to use when evaluating the statistics workstation performance because of the complex
structure and behavior of the DSP. This is due to the number of compound operations, such as
multiply-accumulate.

However, it may be possible to develop a set of approximate relations which could be used
for preliminar) evaluation. These relations could include such factors as the number of divisions,
function calls, and other operations which carry a substantial overhead in DSP operation.

Simulation Approach. Via simulation, one could measure performance by determining the
number of instructions, nops, wait states, etc. This is done by obtaining a profile of the program. The
available software-based DSP simulator (supplied by AT&T as a part of the DSP32 applications
software library) provides such a timing profile for the program. It not only permits a detailed view
of the DSP operation but also provides all the information needed to evaluate performance of the
low-level subroutines. For example, the software simulator permits easy determination of the number
of wait states introduced as a result of memory conflicts.

Low-level Performance Evaluation. Another performance measure could be based on speed
improvement in the low level algebraic and statistical routines and would use actual computation time.
This type of measure is easy to obtain. Howevzr, due to the system overhead a simple relationship
does not exist between the low-level performance and the speed improvement at the system level.

Emulation. Another approach to simulation involves using the DSP hardware-based emulator
to perform an actual real-time speed comparison. However, there is a slight overhead penalty
associated with using the hardware emulator due to the use of breakpoints. If only a relative speed
comparison is desired, then this overhead is not a problem.

9.5.2 System-level Comparison

System or application-level comparison involves measuring computation times at the program
level and is most representative of the actual workstation capabilities. This measure provides the best
performance criterion because the user is normally interested in the total program running time. This
approach involves developing and evaluating two different programs. One of the programs uses only
host-based processing, the other uses DSP support. The specific modes of operation are:

Pure host operation. The pure host mode of operation represents the conventional approach

" For example, DSP marketing announcements often assume that the only operations that are performed are
the MAC operations or some even more complex floating point operation. Thus, in the Motorola 96002
announcement, the peak FLOPS rating assumes concurrent operation of multiplication, addition, and subtraction
(Appendix D). This means that in one instruction cycle, 3 floating point operations can be performed. Since these
capabilities are seldom needed in conventional computations, the peak rating is quite misleading.

93

I
to statistical computing. In this mode all operations are performed in the host. The measured time
represents the baseline for performance improvement evaluation.

Master and slave operation When the DSP is used in the slave mode, all of the IOn
operations are initiated by the host processor. Data transfer was included in the performance I
measure. However, for the cases tested, the transfer time was a negligible portion of the total due
to the DMA transfer capabilities. 3

1000

DSP BSAS

+ DSP hand

.10o + + a m DSP comp
*0 • •

0eo. • 386/287
0.

+ 1386 I
E
- 10
0z

cc sd st cl k-t sor su or fft svdk-m m ppl pp 2 de

Algorithm 3
I

Figure 9.4 Overall timing performance of DSP-based algorithms compared to conventional
microprocessor. 3

"The evaluation results are given in Figure 9.4. Abbreviated names for the programs evaluated
in Section 8 are given along the axis. Reading the legend from top to bottom, the modes of I
computation are (i) DSP compiled with BLAS/BSAS routines, (+) DSP hand optimized code, (*)
DSP compiled with no BLAS/BSAS routines, (0l) PC operation with 386 host processor and 287
coprocessor, and (x) 386 processor alone (this is the baseline of unity speed). One can see that the I
low-level BLAS/BSAS routines are effective in increasing the performance. In addition, the DSP
performance is very sensitive to the type of algorithm. Whereas the numeric coprocessor gives a
uniform speedup across the applications, the DSP depends on the amount of array processing needed.

94

I

9.6 Cost Evaluation

This section presents a preliminary cost estimate for the statistics workstation hardware and
software development. The hardware cost estimate is given for both the workstation development
system and for the hardware. The software development costs will include the planned Phase II
development effort.

Pricing of the system will be determined by market. The initial emphasis should be at
research departments within universities. This means that the cost should be affordable with a PC
and not a Unix-type workstation providing the initial platform.

Cost Summary

PC Basic system - $2000 DSP Board - $1000
Memory - $1000 Memory - $1000
Hard Disk - $500

The specifics are presented below.

9.6.1 Host Cost

Since there are no unique requirements for the statistics workstation host, any standard 286
or 386-type system could be selected. For base line comparison we selected a 20 MHz 386-type
system both on the basis of price and speed.

9.6.2 DSP Board Cost

DSP board cost will depend on the selected DSP type, and speed and memory requirements.
The two choices are to use a commercially available board or to develop a custom DSP board.

In our Phase I effort we used a commercially available DSP32 board. This choice of the
board was made to reduce the project costs, but still provide sufficient capability to evaluate the
expected workstation performance.

Since the DSP board configuration is critical to the success of the statistics workstation, the
advantages and disadvantages of using a commercial board will be reviewed during the Phase II effort.

Using a commercially available board. A detailed description of the commercially available
plug-in DSP boards is given in [EDN April 26, 1990]. A total of 23 companies are either supplying
DSP plug-in boards or marketing DSP support software. Of the 50 different models that are
available, 22 boards use floating point DSP's (AT&T DSP32, DSP32C, and TI 320C30). The majority
of these boards have been designed to support analog interfaces and as such are more expensive.

There are many advantages in using a commercial DSP board. These include elimination of
hardware design costs and associated risks because these are borne by the board vendor. This in turn
implies that software development testing using actual hardware can begin earlier because the need
for designing, development testing, and manufacturing are eliminated.

95

On the other hand, there are also some disadvantages in using a commercial board. These
include lack of flexibility, lack of special features needed for efficient interfacing, and the dependence
on an external vendor. Since the DSP board is from an external source, a higher price is to be
expected. This premium in price may not be excessive because a commercial board is used by a wider I
market share. However, quantity discounts on commercial boards are not very high, unless very largequantities of boards are purchased.

Using an internally developed DSP board. Development of a customized DSP board could I
provide the best speed improvement because the interface could be tailored to support the unique
workstation data transfer requirements and to provide interfacing for multi-DSP applications.
However, the development costs can be relatively high for the initial design because this effort
involves board design, printed circuit artwork generation, board manufacturing, and assembly. These
higher initial costs could be justified only if a larger quantity of boards can be sold and the board
design does not have to undergo major changes. Another advantage of using a customized board is
the retention of the proprietary aspects of the statistics workstation design.

Thus, to reduce the risk, custom board design should not be undertaken before the

workstation design has been frozen, and the potential market share determined.

9.6.3 System Software Cost 3
Costing for the software is broken into three parts (1) development cost, (2) basic statistical

routines cost, and (3) user tools cost. The first cost is borne by the developer, while the latter two I
are market driven. Since software cost prediction is not reliable, only (3) will be described in detail.

The basic statistics workstation software will include routines that perform many of the 3
computations described in Section 8. However, some of the users may desire to develop their own
special versions of the program. This means that the user will not only need access to the original
program source but will also need the two C compilers to support both host and DSP programming. 3

DSP assembler. A standard DSP assembler is sufficient and most appropriate for low-level
module development and optimization. Fortunately, the AT&T DSP32 assembly level coding is
relatively easy to learn because of the higher-level instructions which are available in the DSP.
However, there are programming difficulties due to the pipeline effects and other DSP architecture
imposed instruction constraints. 3

DSP C compiler. A C compiler is needed to support more complex program development.
The key advantage of using a DSP C compiler is in the reduction of the program development time.
The use of the C compiler also permits parallel program development.

Macro generator. A macro generator provides another approach to decreasing program
development time. Although, the macro generators are effective in providing substantial I
improvement in program development time, they are not widely used. They are also particularly

I
96!

I

suitable in those situations where a well-defined high-level problem description exists'.

During the Phase I development effort the use of STAGE2 [Waite 1973], a more capable
macro generator, was investigated. In particular, the STAGE2 macro generator was used for
automatically generating a number of DSP interface programs using a high-level program description.
Although its use did not affect directly the speed of the resulting programs, it did reduce benchmark
program development time and the need for debugging. The automatic generation of the interface
programs almost completely eliminated typing errors during the coding phase.

Although the STAGE2 macrogenerator was used during the initial development effort, a
custom program for generating the same interface could be written in a higher level language (such
as AWK or YACC from UNIX).

1 9.7 Risk Analysis

Although there is risk associated with the development of some of the algorithms, a significant
payoff can be expected because the concept has been proven feasible. The single-chip DSP devices
are widely available and their use is expected to grow at a 30% annual rate. In 1989 the single-chip
DSP market had already reached $1 billion in sales (Computer Design, May 1, 1990).

We can also expect further developments in DSP applications and the availability of new and
even more powerful DSP devices in the future. At the same time, the cost of the DSP devices is
expected to decrease.

The availability of the next-generation DSP devices will not obsolete the present statistics
workstation algorithm development because the. basic operations of the DSP, such as MAC, will not
change. In fact, the new features that have been promised for the next-,,eneration DSP's will help
to further optimize the algorithms. More powerful languages, such as Numeric C, which support
mathematical operations on vectors and arrays may also be standardized for DSP use.

Thus, we can expect that the DSP devices will retain their statistical computation speed
advantages over the conventional microprocessors (Figure 9.3) in the future.

I

: Since the DSP interface programs are relatively complex in structure, a simple macro processor, such as the
one included as a preprocessor to the AT&T DSP assembler and the C compiler, is not suitable for the automatic
generation of interface programs.

I 97

I

10 CONCLUSIONS AND RECOMMENDATIONS

This section summarizes Phase I feasibility investigation results and presents recommendations
for the Phase II statistics workstation development effort.

10.1 Conclusions

10.1.1 Feasibility of Statistics Workstation

The results of the Phase I effort fully substantiated our initial projections for a DSP-supported
statistical computing environment. No major obstacles to speed improvement using the DSP were
discovered. In fact, the majority of the statistical algorithms tested were easily modified to provide
substantial improvements. In those cases where major improvements were not achieved, the
difference was due to operations that were not optimal with respect to the DSP instruction set.

The hardware and software interfaces between the host processor and the DSP were found
to be relatively simple and did not present any major implementation problems. With the planned
use of the DSP32C in the next phase, the interface efficiency will be further improved. This
improvement will be due to a number of factors, such as faster clock speed, use of a 16-bit parallel
interface, and faster IEEE floating point format conversion.

A cost analysis _'r the DSP-based statistics workstation was presented in Section 9. This
analysis showed that the initially proposed cost objectives can be easily met.

10.1.2 Suitability of DSP in Specific Applications

It is our conclusion that a DSP-supported system is highly suitable for most of the
computation-intensive statistical problems, particularly those which can use the unique processing
capabilities of the DSP, such as MAC, address autoincrementing, etc. A favorable DSP instruction
mix will greatly affect performance. This means a high ratio of MAC operations with array indexing.

In those applications which involve many conditional checking and branching operations, the
additional pipeline overhead can substantially reduce the potential gain. It is, however, possible to

compensate for this loss by careful optimization in the inner loops and by using conditional
accumulator load instructions which do not result in pipeline delays.

The single precision floating point normally limits the accuracy of the solution. However, the
use of single precision can hold down the system cost because memory requirements for data storage
are reduced by one half over the double precision case. A number of techniques are available to
minimize the effects of the single precision accuracy limitations, such as data centering. In some
applications, such as exploratory data analysis where speed improvement and cost is of major
importance, single precision operation may be preferable.

98

I

I 10.1.3 Performance and Cost

The improvement in computation speed using the DSP can be expressed as a simple ratio
between the conventional approach and the DSP-based approach. This improvement, however, will
be dependent on problem type, size, and complexity. The use of a numerical coprocessor in
conjunction with the host resulted in only a factor of 4 (our measure) to 20 (highest performance
coprocessor available) speedup over the host alone. However, since the numerical processors cannot
operate independently, parallelism is never achieved.

The use of a DSP in the majority of situations resulted in a major improvement over the
numeric coprocessor, as shown in Figure 9.4.

Based on the processing speed and memory requirements, the hardware cost and
cost/performance ratio was found to be within the initial projections. For the rather low-cost and
low-speed DSP we evaluated, the cost/performance was estimated to be greater than 1 MFLOPS/$ 1 K.
IThis is near the projection originally set by Figure 5.1. The hardware cost estimate included the DSP
board and memory cost along with a readily available PC. Not included in this cost estimate was the
supporting software such as DSP and PC assemblers, compilers, and linkers. This is typically not3 included in the workstation hardware cost.

10.1.4 Anticipated Benefits

3 As shown in this feasibility study, the goal of high-speed and low-cost statistical computation
can be achieved by emphasizing an applications-oriented approach, using the specialized DSP
architecture, and optimizing low-level algorithms to provide for high performance statistical
computation building blocks.

The successful completion of all phases of the statistics workstation project will provide
affordable processing power to those researchers involved with computation-intensive statistical tasks.
Not only will they have more time available for productive research, but they also will be able to
investigate some of the advanced techniques that are now cost prohibitive. The economic benefits
will be reduced research costs.

10.2 Potential Statistics Workstation Applications

The availability of low cost equipment will be of interest to university computer support and
instrumentation support programs, as well as commercial enterprises that do extensive statistical
analysis. Applications include research laboratories, quality control, and financial concerns.
Specialized application areas include manufacturing systems, supercomputing, and scientific
instrumentation. As an example, statistical analyses of processes and defects are important design3 considerations for monitoring instrumentation that will be used on a manufacturing line [Pukite 1990].

Highly complex problems also exist in other fields, such as physics, medicine, and engineering.
In these fields, cost-effective solutions to complex problems have been achieved in engineering and
scientific applications by developing specialized computers [Fox 1988, Alder 19881. The speed and
cost advantage in these applications is realized by narrowing the range of the computations and by
using specialized hardware to handle the highly regular and repetitive tasks. Examples of this

* 99

I
approach include commercially available logic simulation and layout accelerators for the
semiconductor industry.

In developing the statistics workstation we are following a similar approach. We can also
expect thaL statistical techniques that were not used previously due to their reliance on extensive
numerical computation may become routine with the high speed computing capability available in the
statistics workstation. Thus, the workstation users will be able to obtain a low cost and high speed
solution to their statistical problems.

10.2.1 Expected Future Improvements

Although we can predict with certainty that improved DSP devices will be available in the
future, it is difficult to predict the expected improvements in performance and reduction in cost.
There are, however, two processors which could have a major impact on statistical computations, the
Intel 860 and the Motorola 96002.

The Intel 860 is not a true DSP device although it does have many of the features of a DSP. I
It does have some distinct advantages over the present DSP devices in that it supports double
precision computations and includes some graphics operations for three-dimensional displays.

Although the Motorola DSP is not yet in full production, development software is already
available. Based on the number of features of this device and its precision and speed, it should
improve the performance of the statistics workstation. However, the lack of operational hardware U
has prevented a full performance evaluation.

Multi-DSP concept. Using several DSP's in a single workstation has the potential of further
improving computation speed. The cost advantage results from the cost of the DSP being a nonlinear I
function of its speed. For example, when the processor speed is doubled, the added integrated circuit
engineering design and production cost may increase by a factor of four or more.

Even though the multi-DSP concept was not evaluated in detail for this phase, several
application areas are worth noting. The best problems for multi-DSP applications will be those that
lend themselves to easy partitioning of computational tasks, such as bootstrapping or Monte Carlo
analysis. The DSP32 design permits easy implementation of clustering of individual processors using
the serial interface. A number of multiprocessor DSP32 implementations have been described in
AT&T application notes [AT&T 1988].

10.3 Recommendations 3
Specific recommendations are made in this section regarding the prototyping of a more

advanced statistics workstation configuration and further statistical software evaluation and
optimization. The proposed Phase II effort will build on the success of the Phase I feasibility
demonstration and will result in an operational prototype of the statistics workstation.

I
100

I

I 10.3.1 Selected Statistics Workstation System Configuration

Although the basic workstation architecture will not change during Phase II, several new
features and improvements will be added. These will include a dynamic memory allocator for DSP
memory management and computation task manager. The computation task manager will handle
computation task assignment to either PC or to DSP's. The manager will also balance the computing
load between PC and DSP's.

Since we can expect not only new DSP devices to appear in the near future, but also potential
reductions in device prices, the status of the DSP technology will be reviewed at the start of the the
Phase II effort. Thus, the investigation will include evaluation of the Intel 860 and Motorola 96002
devices which should be available by the start of that effort.

I 10.3.2 Statistics Workstation Hardware Recommendations

The statistics workstation hardware must be optimized to provide a cost-effective solutions
to the computation-intensive statistical problems. A brief discussion of the recommended hardware
for a prototype demonstration is presented below.

I Host system. Any higher performance 80x86-type system (such as the 386) would provide a
stable platform for prototyping.

Global Memory. Since memory costs are continuing to decrease, no extra effort was
attempted to reduce overall memory requirements. The specific memory size and speed requirements
will depend to a great extent on the specific application. Two extreme application cases can be
identified. In the first case we are presented with limited amount of input data, but many
computations are needed. In the second case we have a large amount of data, but only a limited
number of computations. The first case is more suitable for DSP processing, whereas the second caseIcan be handled by the host processor which has fast access to a hard disk. Since most of the actual
problems will lie between these two extremes, memory will have to be sized and chosen (eitherSRAM, DRAM, or disk storage) according to the application.

Disk Storage. Hard disk storage is important for fast operation, as any delay in data access

will negate the speed of the computations performed by the DSP.

Input Devices. A keyboard with mouse support provides the standard interface.

Display. Most of the statistical display needs can be met with conventional color display cards
(e.g. VGA format). If more data points or a more sophisticated graphical display is required, then
a graphics coprocessor may be needed to handle the higher display resolution and the increased
display processing load. Therefore, the use and direct interface of a graphics processor to the host-
DSP system should be investigated. For most statistical applications and particularly exploratory data
analysis, a high-resolution color display is preferable over a monochrome monitor. Factors involved
in the selection of the display monitor include resolution and monitor size.

Digital Signal Processor. A wide variety of choices exist. Since DSP devices differ in their
instruction sets and capabilities, a standard approach for incorporating various DSP devices is not
feasible. The majority of conventional DSP plug-in boards have been designed to interface with

101

I
analog signals. Designing a custom DSP board would enable more functionality to be added to the
board. Particularly important is to add multiple DSP's to further speed up the statistics workstation I
operation. Adding multiple DSP's on a single board is a more cost-effective solution than adding
additional boards.

1033 Statistics Workstation Software Recommembatloms

The statistical software prototyped in the Phase I effort was limited to a number of select I
modules needed to demonstrate the feasibility of the concept. Several extensions to this foundation
will be needed before the statistics workstation becomes a viable system. This means that a
comprehensive set of solution techniques will have to be developed and included in the basic
prototype support package. The planned statistics application workstation software will consist of a
systems manager, user and language interface, utility programs, and a statistical routine library. 3

Systems manager. The statistics workstation system manager program will support the user
interface and control all computing tasks. The user interface support will include help and control
menus, input and output device drivers, database, and edit functions. The control functions will I
handle task priority assignments, task sequencing, task scheduling, and task monitoring. In addition,
the manager will handle DSP program and data transfer.

During the Phase I effort, emphasis was on demonstrating the feasibility of the proposed
approach and evaluating the potential speed improvement in statistical computations. As a result,
the developed software had a rather elementary interface. During the proposed Phase II effort, more 3
emphasis should be placed on choosing an efficient, interactive, and user friendly interface.

Error recovery. A thorough error handling module will be developed and added to the statistics 3
workstation. This module will perform extensive data integrity checking and will help to recover in
case of an error. Since computation-intensive programs may require long running times, even when
using hardware accelerators, a running time estimator module is essentiaL .

Utility programs. Because of the widespread use of other statistics packages, support tools
include data translation programs needed for importing and exporting data between the applications. 3

Graphics. Besides the interactive display software required, graphics support should also
include development of graphical output reports as well as interfaces to presentation packages. In
addition to these common interfaces (such as EGA and VGA), selected higher resolution graphics
boards (super-VGA) will provide extended visualization capability. The specific support included will
depend on the commercial availability and software for the appropriate graphics drivers. 3

Statistical application software. Statistical applications modules will use the DSP support only
where needed to reduce the amount of data transfer and high speed memory. The initial application
modules will include those that were identified and investigated as part of this effort. In addition, I
a problem-oriented language support will be provided for solving user-defined problems. An onlinehelp module will display particular solution techniques available in the system.

Statistical language interface. In the S language, as well as the IML language provided by SAS,
the basic computing modules that perform the majority of computations are compiled and available
in a library. An online interpreter processes the user commands and calls the specific subroutines. 3

102

I

Since most of the computations are performed by the compiled modules, the overhead introduced
by the interpreter will not be substantial.

During the Phase II effort a similar approach will be investigated. Since all of the key lower-
level subroutines were already protyped during Phase I, the Phase II effort will concentrate on the
intermediate and top-level software requirements. To create a statistical language for a DSP-based
workstation will require a carefully laid out plan that considers both the PC's and DSP's strengths and
weaknesses.

Application development system. For the sophisticated user, the statistics workstation
development system is a set of software tools for developing DSP-supported statistical application
programs. This system generates C-language functions and data structures for interfacing the DSP
with the PC. The functions and procedures are then linked with the user's application code to form
the final program.

This package gives the statistical program developer the capability to integrate DSP-based
modules into new or existing applications programs. The development system consists of DSP C
compiler, library of low-level statistics subroutines, PC - DSP interface utilities, software description
language interface generator, and multitasking and graphics support software.

3 The elements of the support software are summarized below.

Applications System Applications interface (manager, graphics, ..)
Statistical language command interpreter
Statistical software DSP executable files

I Development System DSP C compiler (including assembler, linker, ..)

PC C compiler (including assembler, linker, ..)

Library of low-level statistics subroutines
PC . DSP interface utilities
Software description language interface generator
Multitasking and graphics software

I
I
I
I

i 103

I

REFERENCES

[Akritas 19861 M.G. Akritas, "Bootstrapping the Kaplan-Meier Estimate", J. American Statistical I
Assoiation, 81 (1986) pp.1032-103&

[Alder 1988] BJ. Alder, ed., Special Purpose Computers, (Academic Press, Orlando, 1988).
[Alexander 1986] S.T. Alexander, "Fast Adaptive Filters : A Geometrical Approach', IEEE ASSP

Magazine, October 1986, 1986, pp.18-2&
[AT&T 1988] WE@ DSP32C Digital Sigpal Processor User Manual and Influrmatiom Mammal

(AT&T Document Management Organization, 1988).
[Bates 1987] D.M. Bates, MJ. Lindstrom, G. Wahba, and B. Yandell, "GCVPACK-Routines for

generalized cross-validation", Communications in Statistics, Series B, 16 (1987) pp.263-297.
[Becker 19881 R.A. Becker, J.M. Chambers, and A.R. Wilks, The New S Language, (Wadsworth &

Brooks/Cole, Pacific Grove, CA, 1988).
[Berger 1985] J.O. Berger, Statistical Decision Theory : Foundations, Concepts, and Methods,

(Springer-Verlag, New York, 1985). I
[Blahut 1985] R.E. Blahut, Fast Algorithms for Digital Signal Processing, (Addison-Wesley, 1985).
[BMDP 1985] BMDP Statistical Software Manual, WJ. Dixon, ed., (University of California Press,

Berkeley, CA, 1985).
[Boos 1986] D.D. Boos and J.F. Monahan, "Bootstrap Methods Using Prior Information",

Biometrika, 73 (1986) pp.77-83.
[Box 1978] G.E.P. Box, W.G. Hunter, and J.S. Hunter, Statistics for Experimenters, (Wiley, New I

York, 1978).
[Bratley, 1987] P. Bratley, B.L Fox, and LE. Schrage, A Guide to Simulation, (Springer-Verlag,

New York, 1987). m
[Brent 1989] E. Brent, Jr., "Statistical Expert Systems: An Example", J. Stat. Computation and

Simulation, 31 (1989) p.103 and Statistical Navigatorym, (IDEA Works, Columbia, Missouri,
1989).

[Chambers 1983] J.M. Chambers, W.S. Cleveland, B. Kleiner, and P.A. Tukey, Graphical Methods
for Data Analysis, (Wadsworth, Belmont, CA, 1983).

[Cleveland 19881 W.S.Cleveland and M.E.McGill, ed., Dynamic Graphics for Statistics,
(Wadsworth, 1988).

[Coe 1989] R.D. Coe, "The Stochastic Spreadsheet : A New Statistical Computing Tool", Appl
Statist, 38 (1989) pp.1 17 -120.

[Cohen 1986] N.H. Cohen, Ada as a Second Language, (McGraw-Hill, New York, 1986).
[Coleman 1988] T.F. Coleman and C. Van Loan, Handbook for Matrix Computations (SIAM,

Philadelphia, 1988).
[Dallal 1988] G.E. Dallal, "Statistical microcomputing - Like it is%, The American Statistician, 42

(1988) p.212.
[DataMyte, 1987] DataMyte Handbook, (DataMyte Corp., Minnetonka, MN, 1987).
[Davidson 1986] A.C. Davidson, D.V. Hinkley, and E.Schechtman, "Efficient Bootstrap Simulation", I

Biomenika, 74 (1986) pp.555-566.
[Diaconis 1983] P. Diaconis and B. Efron, "Computer-intensive Methods in Statistics", Scientific

American, May 1983, p.1 16.
[Dongarra 1979] JJ. Dongarra, C.B. Moler, J.R. Bunch, and G.W. Stewart, UNPACK User's Guide,

(SIAM, Philadelphia, 1979).

104

I

[Dongarra 1984] J. Dongarra, "A Proposal for an Extended Set of Fortran Basic Linear Algebra
Subroutines", Argonne National Laboratory Report MCS-TM-41, October 1984.

[Duda 1973] R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis, (Wiley, New
York, 1973).

[Eddy 1986a] Computers in Statistical Research, Report of a workshop on the use of computers

in statistical research, chaired by W.F. Eddy, (DTIC# AD-A174 835), also published in
Statistical Science. 1986, Vol.1, No.4 pp.419-453.

[Eddy 1986b] W.F. Eddy and MJ. Schervish, "Discrete-Finite Inference on a Network of VAXes",
Computer Science and Statistics: Proc. of 189 Symp. on the Interface, ed. TJ. Boardman.

[Eddy 1986c] W.F. Eddy, "Parallel Architecture - A Tutorial for Statisticians", Interface, 1986.
[Eddy 1986d] W.F. Eddy and MJ. Schervish, "Parallel Processing on a Network of VAXes with

applications", Proceedings of the Statistical Computing Section, American StatisticalAssociation,
(1988) pp.4 1-46 .

[Eddy 1986e] W.F. Eddy and A.C. Jones, "Array Processors - A Tradeoff Between Speed and
Accuracy", Proceedings of the Statistical Computing Section, American Statistical Association,
(1985 pp.370-374).

[Eddy 1987] W.F. Eddy et al, "Graduate Education in Computational Statistics", The American
Statistician, February 1987, Vol.41, No.1.

[Eddy 1990] W.F. Eddy, "Random Number Generators for Parallel Processors", To appear in the
Journal of Computational and Applied Mathematics, 31, 1990.

[EDN 1988] "EDN's DSP Benchmarks", EDN, September 29, 1988, p.12 6 .
[Efron 1982] B. Efron, The Jackknife, the Bootstrap, and Otrher Resampling Plans, (SIAM,

Philadelphia, 1982).
[Efron 1983] B. Efron and G.Gong, "A leisurely look at the bootstrap, the jackknife, and cross-

validation", The American Statistician, 37 (1983) p.3 6 .
[Efron 1986] B. Efron and R. Tibshirani, "Bootstrap Methods for Standard Errors, Confidence

Intervals, and Other Measures of Statistical Accuracy", Statistical Science, 1 (1986) pp.5 4 -7 7.
[Efron 1990] B. Efron, "More Efficient Bootstrap Computations", J. American StatisticalAssociation,

85 (1990) p.7 9.
[Electronics 1988] "Array boards give IBM PC near-minisuper speed", Electronics, March 31,1988,

p.65.
[Electronics 1990] "New Weapon for Quality Manufacturing", Electronics, February 1990, p.16 .
[Elkins 1989] T.A. Elkins, "A Highly Random Random-Number Generator", Computer Language,

December 1989, pp.59-65.
[Erisman 1988] A.M. Erisman, "Supercomputing as a tool for product development", International

Journal of Supercomputer Applications, 2 (1988) p.118.
[FCW 1988], "Linpack benchmark's test mini-supers' performance", Federal Computer Week, Vol.2,

No. 15, 1988, p.28
[Fox 1988] G. Fox et al, Solving Problems on Concurrent Processors, Vol.1: General Techniques

and Regular Problems, (Prentice Hall, Englewood Cliffs, NJ., 1988).
[Fridlund 1990] A.J. Fridlund, "Number Crunching Statistics Software", Info World, Feb.26,1990,

p.159.
[Friedman 1974] J.H. Friedman and J.W. Tukey, "A Projection Pursuit Algorithm for Exploratory

Data Analysis", IEEE Trans. on Computers, C23 (1974) pp.881-890.
[Friedman 1987] J.H. Friedman, "Exploratory Projection Pursuit", J. American Statistical Society, 82

(1987) pp.249-266.
[Fuccio 1988] M.L Fuccio et al, "The DSP32C : AT&T's Second-Generation Floating-Point Digital

105

I
Signal Processor", IEEE Micro, December 1988.

[Gardiner 1983] C.W. Gardiner, Handbook of Stochastic Methods, (Springer-Verlag, Berlin, 1983).
[Gelb 1974] A. Gelb, ed., Applied Optimal Estimation, (MIT Press, Cambridge, MA, 1974).
[Gleason 1988] J.R. Gleason, "Algorithms for balanced bootstrap simulations", The American i

Statistician, 42 (1988) p.26 3 .
[Goldberg 1988] E. Goldberg, "Supercomputing: Problems and promises of the new technology",

Federal Computer Week, Vol.2, No.23, 1988, p.2 6 .
[Gong 1983] G. Gong, "Some Ideas on Using the Bootstrap in Assessing Model Variability', in

[Heiner 1983], pp.169 - 17 3.
[Gorin 1986] A.L.Gorin, et aL, "Speech recognition on the DADA/DSP multiprocessor", Proc. of

Intl. Conf. on Acoustics, Speech, and Signal Processing, (IEEE, 1986), p.361.
[Grier 1988] D.A. Grier, "Supercomputers and Monte Carlo Experiments", Chance, 1 (1988) pp.19-28.|
[Griffiths 1985] P. Griffiths and I.D. Hill, ed., Applied Statistics Algorithms, (Ellis Horwood

Limited, Chichester, 1985).
[Hall 1989] P. Hall, M.A. Martin, and W.R. Schucany, "Better Nonparametric Bootstrap Confidence

Intervals for Correlation Coefficient", J. Stat. Computation and Simulation, 33 (1989) p.161.
[Harrod 1987] WJ. Harrod, "Parallel programming with the BLAS", in: The Characteristics of

Parallel Algorithms, ed. LH. Jamieson et al, (MIT Press, Cambridge, 1987), p.253.
[Hart 1989] J.E. Hart, "A Look at DSP Chips", BYTE, August 1989, pp.250-251.
[Hartigan 1985] J. Hartigan, "A K-means Clustering Algorithm", in [Griflfths 1985].
[Heiner 1983] K.W. Heiner, R.S. Sacher, and J.W. Wilkinson, ed. Computer Science and Statistics:

Proc. of the 14" Symposium on the Interface, (Springer-Verlag, New York, NY, 1983). I
[Hinkley 1988] D.V. Hinkley "Bootstrap Methods", J. Royal Stat. Soc., B50, (1988) pp.32 1-3 37 .

[HPS 19901 Special Issue on DSP Tools, High Performance Systems, February 1990.
[IEEE 1988] IEEE Standard VHDL Language Reference Manual, (IEEE, New York, 1988). I
[Jaffe 1989] J.A. Jaffe, Mastering the SAS System, (Van Nostrand Reinhold, New York, 1989).
[Jain 1987] A.K. Jain and J.V. Moreau, "Bootstrap technique in cluster analysis", Pattern Recognition,

20 (1987) p.547.
[Jain 1988] A.K. Jain and R.C. Dubes, Algorithms for Clustering Data, (Prentice-Hall, Englewood

Cliffs, NJ, 1988).
[Jones 1987] M.C. Jones and R. Sibson, "What is Projection Pursuit?", J. Royal Statistical Society,

AISO-I (1987) pp.1-36 .
[Kay 1988] S.M. Kay, Modern Spectral Estimation, (Prentice-Hall, Englewood Cliffs, NJ, 1988).
[Kennedy 1980] W.J. Kennedy, Jr. and J.E. Gentle, Statistical Computing, (Marcel Dekker, New

York, 1980).
[Kernighan 1978] B.W. Kernighan and D.M. Ritchie, The C Programming Language, (Prentice-

Hall, Englewood Cliffs, NJ, 1978).
[Klinger 1982] A. Klinger, "Computer system organization for pictorial data", in: Picture Engineering,

edited by K-S. Fu and T.L Kunii, (Springer-Verlag, NY, 1982), p.26 .
[Klonias 1987] V.N. Klonias and S.G. Nash, "Numerical Techniques in Nonparametric Estimation",

J. Stat. Computation and Simulation, 28 (1987) p.9 .
[Korn 1989] G.A. Korn, Interactive Dynamic System Simulation, (McGraw-Hill, New York, NY,

1989).
[Laird 1987] N.M. Laird and T.A. Louis, "Empirical Bayes confidence intervals based on bootstrap

samples", Journal of the American Statistical Association, 82 (1987) p. 739.
[Lewi 1982] P.J. Lewi, Multivariate Data Analysis in Industrial Practice, (Research Studies Press,

106

I

I

Chichester, 1982).
[Lewis 1989] P.A.W. Lewis and E.J. Orav, Simulation Methodology for Statisticians, Operations

Analysts, and Engineers 1, (Wadsworth & Brooks/Cole, Belmont, CA, 1989).
[Lo 1988] A.Y. Lo, "A Bayesian Bootstrap for a Finite Population', Annals of Statistics, 16 (1988)

pp.1684-1695.
[Love 1988] P.L Love and M. Simaan, "Automatic Recognition of Primitive Changes in

Manufacturing Process Signals", Pattern Recognition, 21 (1988) pp. 333-342.
[Lucky 1989] R.W. Lucky, Silicon Dreams, (St. Martins Press, New York, 1989).
[MacKay 1981] A. MacKay, Practical Computing, September 1981.
[Maindonald 1984] J.H. Maindonald, Statistical Computation, (John Wiley, NY, 1984).
[McCullagh 1983] P. McCullagh and J.A. Nelder, Generalized Linear Models, (Chapman and Hall,

New York, 1983).
[Moriarty 1989] K.J.M. Moriarty, "Parallel Processing of Large-Scale Applications on Powerful

Multiple Processors", IntL Journal of Supercomputing Applications, 3 (1989) pp.82-87.
[Motorola 1990] Motorola 96002 Development Software Documentation.
[Newton 1988] H.J. Newton, TIMESLAB : A Time Series Analysis Laboratory, (Wadsworth &

Brooks/Cole, Pacific Grove, CA, 1988).
[Noreen 1989] E.W. Noreen, Computer Intensive Methods for Testing Hypotheses, (Wiley, New

York, 1989).
[Otnes 1978] R.K. Otnes and L Enochson, Applied Time Series Analysis, Vol.1, (Wiley, New York,

1978).
[Park 1988] S.K. Park and K.W. Miller, "Random Number Generators : Good Ones are Hard to

Find", Communications of the ACM, 31 (1988) pp.1192-1201.
[Petersen 1983] W.P. Petersen, "Vector Fortran for Numerical Problems on the CRAY-i",

Communications of the ACM, 26 (1983) pp.1008-1021.
[Phipps 1986] T.E. Phipps, Jr., "The Inversion of Large Matrices", BYTE, April 1986, pp.181-188.
[Plant 1989] M.W. Plant and R.E. Quant, "On the Accuracy and Cost of Numerical Integration in

Several Variables", J. Stat. Computation and Simulation, 32 (1989) p.161.
[Press 1986] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes

: The Art of Scientific Computing, (Cambridge University Press, Cambridge, 1986).
[Press 1989] SJ. Press, Bayesian Statistics: Principles, Models, and Applications, (Wiley, NY,

1989).
[Price 1989] W.J. Price, "A Benchmark Tutorial", IEEE Micro, October 1989, p.28.
[Pukite 1990] P.R. Pukite and C.L Berman, "Defect Cluster Analysis for Wafer Scale Integration",

IEEE Transactions on Semiconductor Manufacturing, August 1990.I [Pukite 19861 1 Pukite, "Implementation of Logistics Software on Microcomputers", Technical
Report FR-1, DTIC# AD A167 641, (1986).

[Purn 1987] M.L. Puri, J.P. Vilaplana, and W. Wertz, eds., New Perspectives in Theoretical andApplied Statistics, (Wiley, New York, 1987).
[Quattro 1989] Quattro User's Manual, (Borland, Scott's Valley, CA, 1989)

[Robinson 19871 J. Robinson, "Nonparametric Confidence Intervals in Regression: The Bootstrap
and Randomization Methods", in [Puri 1987], pp.243-245.

[Rubin 1981] D.B. Rubin, 'he Bayesian Bootstrap", Annals of Statistics, 9 (1981) pp.130-134.
[Rubinstein 1986] R.Y. Rubinstein, Simulation and the Monte Carlo Method, (Wiley, NY, 1986).
[Rushinek 1986] A. Rushinek and S.F. Rushinek, "What makes users happy?", Communications of

the ACM, 29 (1986) p.594.
[Ryan 1985] B.F. Ryan, B.L Joiner, and T.A. Ryan, Jr., Minitab Handbook, (Duxbury Press, Boston,

107

I
1985). i

[Santner 1989] T.J. ',antner and D.E. Duffy, The Statistical Analysis of Discrete Data, (Springer-
Verlag, New York, 1989).

[Sarkar 19871 A. Sarkar and B. Kartikeyan, "Forecasting by Volterra-type models", J. Stat.
Computation and Simulation, 28 (1987) p.2 45 . I

[Schaffner 19811 S.C. Schaffner, "Calculation of B-Spline Surfaces using Digital Filters", Computer
Graphics, 15 (1981) pp.

[Searle 19891 S.R. Searle, "Statistical Computing Packages: Some Words of Caution", The American
Statistician, 43 (1989) pp.189-190.

[Silverman 1982] B.W. Silverman, "Kernel Density Estimation using the fast Fourier Transform%,
AppL Statist., 31 (1982) pp.93-97.

[Silvcrman 1986] B.W. Silverman, Density Estimation for Statistics and Data Analysis, (Chapman
and Hall, London 1986). I

[Snodgrass 19891 R. Snodgrass, The Interface Description Language, (Computer Science Press,
Rockville, 1989).

[Specht 1990] D.F. Specht, "Probabilistic Neural Networks", Neural Networks, 3 (1990) pp.109-118.
[Taguchi 1989] G. Taguchi, E.A. Elsayed, and T. Hsiang, Quality Engineering in Production I

Systems, (McGraw-Hill, New York, 1989).
[Thisted 1988] R.A. Thisted, Elements of Statistical Computing: Numerical Computation,

(Chapman and Hall, NY, 1988). l
[Turbo C, 1988] Turbo C Reference Guide, (Borland, Scotts Valley, CA, 1988).
[Uniejewski 1989] J. Uniejewski, "Characterizing RISC Systems using Application Benchmarks",

Computer Design, November 13, 1989, RISC supplement pp.45-48.
[Waite 1973] W.M. Waite, Implementing Software for Non-Numeric Applications, (Prentice-Hall,

Englewood Cliffs, NJ, 1973).
[Wetherill 1985] G.B. Wetherill and J.B. Curram, "The Design and Evaluation of Statistical Software

for Microcomputers", The Statistician, 34 (1985) pp.391-427.
[Wichmann 1985] B.A. Wichmann and M.A. Wong, "An Efficient and Portable Pseudo-Random

Number Generator", in [Griffliths 1985].
[Wilson 1988] P. Wilson, "Floating Point Survival Kit", BYTE, March 1988, p.2 17.
[Wirth 19761 N. Wirth, Algorithms + Data Structures = Programs, (Prentice-Hall, Englewood

Cliffs, NJ, 1976).
[Woodward 1988] W.A. Woodward, A.C. Elliot, H.L Gray, and D.C. Matlock, Directory of

Statistical Microcomputer Software, (Marcel Dekker, New York, 1988).
[Young 1989] F.W. Young, "Visualizing Six-Dimensional Structure with Dynamic Statistical

Graphics", Chance, 2 (1989) pp.22-30.
Ide Jong 1989] VJ. de Jong, A Specification System for Statistical Software, (CWI Tract,

Amsterdam, 1989). i

I
I
I

108

A Appendix - Glossary of Basic Statistical Subroutines

This appendix describes the low-level statistics and linear algebra routines (BSAS and BLAS)
that have been prototyped in this study. For each routine, both the C code (Turbo C version 2.0)
and DSP assembler code (AT&T DSP321) are given. Both of these code versions can be compiled
and linked with the compatible C compiler (AT&T DSP C compiler version 1.3.3) for use on the
DSP. The subroutines can then be used to drive higher-level applications. The C code alone can
be used to run on the PC alone for initial prototyping and debugging. Differences in performance
between DSP and PC implementations was most often determined at the level of these routines.

Notation

The notation S<name>, in for example SCOPY, indicates single precision. The label
SCOPY: indicates the starting memory location of the subroutine. Within the DSP routines, the
inner loop return addresses end with 1: (for example routine ABSDEV has label absdevl:). To set the
increments to 4 bytes (size of single-precision floating point number), two consecutive multiply by 2
instructions are performed (i.e. *r4++r15 increments array by r15, which is a multiple of 4).
Protected registers in the DSP and compiler for function calls are the following:

ri8 holds the return address from the subroutine.
r19 is for incrementing the stack and its value is set to 4 for floating point.
r14 is the stack pointer for passed arguments.

Labels such as A-ZERO store global data (in this case, the value 0.0). Return float values are stored
in aO and return integer values are stored in rl.

SThe DSP32C version has also been coded but is not shown for proprietary and space limidtation reasouns.

109

I

ABSDEV
Prototype: float ABSDEV (int N, float SX[J , int INCX, float SA)
Arguments: N number of elements in array

SX[] floating point array N

INCX array integer increet or stepwIx -aI
SA floating point refeence value

Description: ABSDEV returns the sum of absolute deviations of the elements of
array SX from SA. This is useful for calculating robust statistical parameters. By using the

DSP iar o function, this is well suited for the DSP. B

C code ISP code

float ABSDEV (int N, float SX[), int INCX, ABSDEV: *r144+r19 = a2 = a2 I
float SA)*r4++rl9 - a3 - a3

(register int i, n; nop
static float sum; r14 - r14 - 24

a3 - *r14++r19 /* SA /1
sum = 0.0; /* initial value C/ r15 = *r14++r19 /* INC(/
four (t-n=O; n<N; i+=INCX, n++) r4 - *r144-+r19 /* SX[]/

sum +- fabs(SX[i] - SA); r3 a *rl4--r19 /* N */
/= sum abs value of all elements */ rl - A ZERO

return(sum);rl 5 - rTs * 2
/* End ABSDEV * / r15 - r15 * 2 /* float INC(*/U

r3 a r3 - 2 /* adjustN N /
aO - *rl /* initial factor */

absdevl: al - -a3 + *r4-Hr1l5
a2 - -al I
a2 - ifalt(al)

valpos: if (r3-->-O) goto absdevl
aO - a2 + aO /* summing term "/
a2 = *rl4-.rl9
a3 = *rl4++rl9
return(rl8)
r14 = r14 - 8 /*** End ABSDEV =/ !

ADDCPY
Prototype: void ADDCPY (int N, float SX[], int INCX, float SY[], int INCY, float FACTOR) 3
Arguments: N number of elements in array

SX[] floating point x array input y, =x, + b i = 1,...,N or
INCX integer increment for x I
SY[I floating point y array output 9 1 + b
INCY integer increment for y
FACTOR floating point scalar

Description: ADDCPY adds a floating point scalar, FACTOR, to the elements of an array. The modified
values are returned in a separate array. This is useful for centering around means, etc. Array
multiplications make this suited for the DSP.

1
I

110I

I

I

I clode oSP ode

void ADOCPY (int N, float SX(], int INCX, ADOCPY: r14 - r04 - 24
float SY[], int INCY, float FACTOR)al . *r14++r19 /* Factor adding *

{register tnt i, J, n; 017 - *r14++r19 /* INCY ,
rl - *rl4++r19 /* SY */

for (i=j-n-O; ncN; i+-INOC, J+-INCY, n++) 016 a *r14++r19 /* INCX '

SV~j] a SX[i] + FACTOR; r3 *r144++r19 /* SX "/
_/ add factor to each element 0/ .5 a *r4+r9 /' N"/

I/** End ADDCPY 0*/ r17 - r17 * 2
r17 r17 * 2
0r6 - 016 * 2
r06 - r16 * 2
0r5 - r15 - 2

addcpyl: if (r15-- >=O) goto addcpyl
*rl+rl7 a aO - al + *r3++r16
return (r1S)
nOp /** End ADOCPY "/

*I ADDSCAL
Prototype: void ADDSCAL (int N, float SY[, int INCY, float A, float B)
Arguments: N number of elements in array

SY[] input floating point y array aj +
INCY integer increment for y arrmy

A floating point multiplierBfloating point translation

Description : ADDSCAL scales and translates a vector. This is useful for doing an in-place linear
transformation. Multiply and accumulate in one instruction makes this well suited for the

3 DSP.

Ccggle _______d

void ADDSCAL (int N, float SY[], int INCY, ADDSCAL: *r14++rl9 = a2 = a2
float A, float B)opI register int i, n; 04 = 04 24 /* (1+5)*4

a2 - *r14++r19 /* Translation *

for (i=n=O; n<N; i+=INCY, n++) al = *r14++rl9 /* Multiplier */
SY(i] = A * SY[t] + B; r17 = *rl4e-rl9 /* INCY */

/* linear transformation on all elements C, rl = *r14++r19 /* SY */
/***End ADDSCAL m./r15 = *r14++rl9 /* N *

r17 - r17 * 2
Ir17 = r17 * 2

r15 = r15 - 2
addscall: if (r15-- >=O) goto addscall

*rl++r17 = aO = a2 + al * *rl
a2 = *r14
return (r18)
nop /*.*** End ADDSCAL *CC"/

* ADDSCALCPY
Prototype: void ADDSCALCPY (int N, float SX[1, int INCX, float SY[1, int INCY, float A, float B)
Arguments: N number of elements in array

SX[] input floating point x array Y = a + b
INCX integer increment for x array

SY[] output floating point y array

INCY integer increment for y array

I 111

I

i
A floating point scaling factor

B floating point translation
Description: ADDSCALCPY scales a vector and adds a translation before copying to y. This is the bas

for making a linear transformation. Multiply and accumulate in one instruction makes this well
suited for the DSP.

C code
void ADDSCALCPY (int N. float SX[], int INCX. ADOSCALCPY: sr14++rl9 * a2 a I

float SY[]. int INCY. float A. float B) hop

register mnt i. j. n; r04 - 014 - 32 /I (7+1)*4 8/

a2 = *rl4++rl9 /* Translation /i
for (i-j-n-O; n<N; i+=INCX, j+=INCY, n++) al a *rl4++r19 /* Multiplier 'I 1

SY[J] a A * SX~i] + B; 017 - *r144-•r19 /s [NCY s
/* linear transformation on all elements a/ r l a r14.-+rl9 /* SY */

I /8* End ADOSCALCPY 8*88/ r16 *r144++r19 /* INCX 0/
r3 a *r14++r19 /* SX */
r05 a r14++r19 /. N 8/ I
r17 a r07 * 2
017 = 017 * 2
r16 - r16 * 2
r16 = r16 * 2
rIS a r0S - 2

asccpyl: if (rl5-- 3-0) goto ascpyl
*rl++rl7 a aO - a2 + al * *r3++rl6

a2 = *r14
return (r08)
nop /**8 End ADDSC ALCPI/

ADDVEC I
Prototype: void ADDVEC (int N, float SX[], float SY[1, float SZ[])
Argunents: N number of elements in array

SX[] floating point x array input
SY[] floating point y array input
SZ[] floating point output amr

Description: ADDVEC adds two floating point vectors. The modified values are returned in a separate
array. The array addition is well suited for DSP operation.

C code DSP code

void ADDVEC (int N, float SX(], float SY[]. ADDVEC: r14 0 r14 - 16
float SZ[]) rl *r14++r19 /I output array SZ[] /

register int n; r2 a *r14++r19 /* input array SY[] /
r3 a r14++r19 /* input array SX[]

for (n-O; n<N; n++) r4 a *rl4++rl9 /* g of elements N ./

SZ[n] = SX[n] + SY(n]; nop
}/,*8* End ADDVEC *8*,/ r4 a r4 - 2

addvecl: if (r4-->-O) goto addvecl i
*rl.. - aO = *r3+-+ + *r2++
return(r18)
nop /8*8 End ADDVEC *8/

CDF
Prototype: void CDF (int N, float SX[i, nt INCX, float SY[], int INCY) I
Arguments: N number of elements in array

SX[] input floating point x array

112

INCX integer increment for x array
SY[] output floating point y array !
INCY integer increment for y array yj =j

Description CDF computes the ninning sum or cumulative distribution
function for an input array. The array addition makes this
well suited for DSP operation. For long arrays it may be wise to center the data beforehand in
order to reduce roundoff errors.

C code QSP code

void CDF tnt N, float SX[], int INCX, CDF: r14 a 014 - 20
float SY[], int INCY) r17 a *r4++r19 /* INCY "

I register Int i, J, n; rl - *r14++rl9 /* SY */
static float accum; r16 = *r14++r19 /* INCX =/r3 - *r14++r19 /* Sx *

accum = 0.0; /* initial sum 05 - *r14++r19 /* N
for (C=j-n-0; n<N; i+=INCX, J+=INCY, n++) r2 - A ZERO

SY[J] - accum += SX[i]; r16 - 716 * 2
/* accumulate sum of SX/ r16 r16 * 2

} /***.* End CDF 0*7/ n7- 017 * 2
r17 = r17 * 2
015 = r5 - 2
aO * 'r2

cdfl: if (r15-- >= 0) goto cdfl
*rl+-•rl7 - aO - aO + *r3.r16
return (r18)
nop /*** End COFrr 1

CENTER
Prototype: void CENTER (int N, float SY[], int INCY, float FACTOR)
Arguments: N number of elements in array

SY[] floating point y array input Yj - Y, + b i = 1,...,N or
INCY integer increment for y
FACTOR floating point scalar T -37+ b

Description: CENTER adds a floating point scalar, FACTOR,
to the elements of an array. The modified values
are returned in the same array. This is useful for centering around means, etc. The array
operation makes this well suited for DSP operation.

C code DSP code

void CENTER (irt N, float SX[]. int INCX, CENTER: r04 = 0l4 - 16
float FACTOR) al = *r14++r19 /* Factor adding */

register int i, n; r16 = *rl4++r19 /* INCX)(
for (1=n=O; n<N; i+=INCX, n++) r3 - *r14++r19 /* SX */

SXEi] += FACTOR; r05 - n14..n19 1' N ~
/+ add factor to each element S/ r16 = 016 * 2

} /***** End ADD ***/ r16 = r16 * 2
r05 = 15 - 2

centl: if (r15-- >=O) goto cent1
*r3++r16 = aO = al + *r3
return (r18)
nop /*** End CENTER

113

CSUM
Prototype: float CSUM (int N, float SX[1. int INCX)
Arguuants: N number of elements in array

SX[I floating point array
INCX integer increment for array w =Ex

Description : CSUM calculates the cumulative sum of N elements in an array. The army
summation makes this well suited for DSP operation. To reduce roundoff
errors, it may be wise to center the data beforehand.

C code 3S
float CS•M i(nt N, float SX(], 1nt IN() CSUM: r14 - r14 - 12

{ register int i. n; 016 a Or14++r19 /1 INOC /
static float sum; r3 *rl4++rl9 /* SX 1

017 - *r14++r19 /* N */
sum - 0.0; /* initial sum r2 a A ZERO
for (lun=O; n<N; i+- INOC, n++) r17 = J47 - 2

sum - SX(i]; /* sum all elments/ r16 - r16 2
return(sum); r16 a 016 * 2
/ ~ End CSUM / a&0 * r2

csuml: if (r17- >- 0) goto cauml
aO - sO + *r3+er16
return (018)
nop /** End CSL M /

CSUMSQ
Prototype: float CSUMSQ (iat N, float SX[1, int INCX, float SY[1, int SY[])
Arguments: N number of elements in array

SX[1] floating point array x 2
INCX integer increment for array x W =Yi
SY[I floating point array y
INCY integer increment for array y

Description: CSUMSQ calculates the cumulative sum of a product of a value squared and another value. If
either INCY or INCX is set to zero then it becomes a product of an array and a fixed value.
This is suitable for calculating density function variances. SDOT can be used to calculate
means in a similar manner. Array multiplication and addition makes this well suited for DSP I
operation.

I
I
I
I
I

114

I

C code, OW Cde

f float CSMS (int N, float SX[], int IINOX, CSIMS: 014 a 0l4 - 20
float SY[], int INCY)r15 - *r14++r19 /* INCY *Iregister int , J. n; r2 a *rl4++r19 /* input array SY[] /

static float sum; r16 a *rl4++rl9 /* INCX */
r3 a *r14..r19 /* input array SXK] 'I

sum a 0.0; /* initial value r4 *rl4++rl9 /* 0 of elements N /
for (i-j-n-O; n<N; i+-INOC, jJ-INCY, n++) rl = A ZERO

sum +- SX[t] * SX[i] * SY[ij; l5 -J rS 2
/* calculate sqr(X)*Y 0/ v15 - r15 * 2

return(sum); r16 - r16 * 2
) End CSLF / r16 - r16 * 2

r4- r4- 2
aO - *r1

csumsql: al a Or3 * *r2++r15
nopif (r4-->-*O) goto csumsql

aO = aO + al * *r3++r16
rturn (r18)
nop /* End C(4SQ L /

DIST
I Prototype: float DIST (int N, float SX[i, nt INCX, float SY[1, int INCY)

Arguments: N dimension or number of elements in arraysx[floating point array x W 112 -y ~
INCX integer increment for array x
SY[D floating point array y
INCY integer increment for array ym Description : DIST calculates the square of the Euclidean distance between two vectors. This is well suited

for the DSP when the dimension of the vectors (N) becomes much larger than 2.

C code OSP code

float DIST (int N. float SX[], int IN(X, DIST: 014 - 014 - 20

r16 - *r144•r19 /* INCX =

float SY[], int INCY) rl = *rl4++rl9 /* SX */I{register int i, j, n; 017 - *r14++r19 /* INCY "

static float out, temp; r2 - *r14++r19 /* SY *l
out a 0.0; r3 - *rl4.-av19 /* N "/
if (NcO) r4 = A ZERO

return(O.0); r17 - 717 * 2
for (i-j-n=o; n<N; I+=INCX. J+=INCY, n++) r17 - r17 * 2 /* inc y
1 r16 - r16 * 2

temp a SX1] - SY i]; r16 r16 * 2 /* inc x/
out += temp* temp; aO *r4 /* load zero

} r3 r3 - 2 /* N - 2 counter*/
return(out); distl: al - *rl.arl6 - *r2+r17
/***** End DIST ****/ nop

if (r3-- >=0) goto distl
aO = aO + al * al
return (r08)
nop /m End DIST ***/

115

I

EXPSM i
Prototype: void EXPSM (int N, float SX(1, mt INCX, float SY[1] int INCY, float ALPHA)
Argusnhnts: N number of elements in array

SX[I input floating point x array y - (l-a)yH +INCA inee incremen for x army

SY[I input flowing point y array
INCY integer increm t for y army
ALPHA smootling parameter

Description: EXPSM filters an input array using an exponential smoothing algorithm. Army multiplication
and addition makes this well suited for DSP operation. Other filtering operations such as IIR
and FIR are available in the AT&T DSP library.

C code 0SP

void EXPS•4 C t N. float SX(]. int INCX. EXPS4: *r14++rl9 - a2 - a2
float SY[], int INCY, float ALPHA) nop

{ register int i. J, n; r14 - r04 - 28 /* (6+I)*4 0/
static float tamp; a2 a "r14++r19 /* ALPHA 0/

07 - *rl4++r19 /* INCY /
SY[O] - SX[O]; /* initial starting values */ *rl4+.rl9 /* SY /Ij - 0; 016 - *r14+.+r19 / INOX *
for (iunuO; n<N; 1+-INCX, n++) r3 - *r14++rlg /* SX .

teap SY[J+=INCY] * (1 - ALPHA); 5 - *r14++r19 /* N/ I
SY(j] -t mp ALPHA SX[i]; r4 a A ONE

/* (1 - alpha)*SY + alpha*SX */ al a -12 + "t4 /* load 1-ALPHA /
r16 - r06 * 2

} /* End EXPSM *a/ 016 = 016 * 2
r05 - 015 - 2
if (MI) goto expsms
•rl - aO = *r3++r16 /" SY(O) - SX(O) /
r05 u1 - 1
0r17 - r1?* 2 2
017 - 017 *2

r4 - rl
r4 - r4 + r07

expsml: aO - al * *r1 ++r17
if (r15-- >= 0) goto expsMl
*r4.++rl7 = aO = aO + a2 * *r3++r16

expsme: a2 - *r14
return (r08)
nop /*** End EXPSM *S*/

FILL
Prototype: void FILL (int N, float SX[1, int INCX, float START, float STEP)
Arguments: N number of elements in army

SX[floating point x array to be filled x = CO I
INCX integer increment for x array
START starting value for fill Xi= Xi-i+ C
STEP step value for fill __

Description: FILL creates an array of floating point values based on a
starting value and a step size. This can be used to zero an array, etc. The use of accumulators
for incrementing makes this well suited for DSP operation.

I
116I

I

mC co._.._ OS ==

void FILL (int N. float SX[], int INCX, FILL: r4 r14 - 20

float START, float STEP) al . r14.+r19 /1 STEP /
(register int i. n; &O - *r14++r19 /* START

015 - *r14++r19 /* INCO 8
SX[O] - START; /* store starting value / r3 - *r14++r19 /0 output array SX[] '/

for (i=INCX. nal; n<N; l+=INCX, n++) r4 = *r14++r19 /* I elements N /
SX[i] = SX[i-INCX] + STEP; r0S = r05 * 2

/* store each value 1 step apart / r5 0 r5 2

/ End FILL 4 ,/ r4 r - 2
if (ml) goto fille
*r3++r15 aO - a0
r4=r4- I

fll1: if (r4-->=0) goto fill
*r3++r15 = a0 - aO + al

fille: return (r18)
nop /* End FILL m/

* FLOATA
Prototype: void FLOATA (int N, int X[], int INCX, float SY[1, int INCY)

IArgunients : N number of elements in arrayI
xts: inNu I inef x frray Y=(float)x : ix=

INCX integer increment for x array
SY[I output floating point y array
INCY integer increment for y array

Description: FLOATA converts an array of integer values to an array of floating point numbers. For each
array element, a single DSP instruction is needed to convert from integer to float.

C Ccode OSP code

void FLOATA (int N, int X[], mnt INCX, FLOATA: r14 - r14 - 20
float SY[], mnt INCY) r17 - *rl4++rl9 /* INCY /

register int i. J. n; rl - *rl4++rl9 /* SY /
r16 - *r14++r19 /* INCX /

for (i=j=n=O; n<N; l+=INCX, J+uINCY, n++) r3 = *r14++r19 /* X */
SY[j] - (float) X[i]; r15 = *r14++r19 /* N /

/* cast integer array to float */ r17 a r17 * 2
/*** End FLOATA 0 r17 = r17 * 2

r06 - r16 * 2

r05 - r15 - 2
floatal: if Cr15-- >=O) goto floatal

*rl++rl7 - aO - float(*r3.h.r16)
return (r18)
hop /*** End FLOATA /

1 HEAP
Prototype: void HEAP (int N, float SX[1, int INCX)

Arguments: N number of elements in array
SX[] input floating point x array I sont(x),
INCX integer increment for x array

Description: HEAP does an in-place heap sort in ascending order where x1 <I , X2 , X_ < XN
on the floating point array SX. This routine is not
optimal for the DSP because of the frequent use of3 integer operations. However, the low level optimization increases the speed by 30% over the

* 117

I

DSP C-copie version.

void HEAP (mnt N, float SX(J. it M1CC Weine regi ri
register imt i. ir. J. It /* indices 0/ #dafin* regir r2
static float tempt I' temp storage 0/ #def ine remj r3

Wieio regi r4
I aN 0INOC; / right end of array/ Wdeine rbase r5
lr -(N - 1) NOC; Weine regn rE

if (1 ~0 /0 still hiring* Odfne/glr
I1-- INCX; Weine reg2 rS
tamp - SX1l]; Widefn rna r16

) Weine rcopy 017I
else /* promotion retiween phase V

tep- SX~ir]; /* retire top of heawo HEAP: *rl4..n9 arS

SXCirJ - SX[OJ; /* to end of array 'I n4..rlg r6
In-i INCX; On14..rlg r7I
if (in m 0) n14+.rl9 u S

{SXC0] temp; /* done with sort 0/ nap
return-, 04 a r14 -28 /s (4+3)4 '

Irinc a *rl4+.r19 /* 11CC V
rbese a* n14*en19 /* ARRAY V/

1 * 1;regn a *n14.'.n19 /* NUMBER VI
j * 40; 014 a r14 +.16

/* sift down temp to proper position 0/ heap: rinc a rinc*2
while (34- ir) rinc a rinc*2I

{if j CirU (3]SX (j] C.xjINC])0 a 4rinc
3 +a INOC; al a float(i-14)
if teMPV S(j]) /* denitetamp 0/ /0 al holds floating INCC

(SX1i] - SX(3]; regI - regn/2
J rl4 - regi

j +a INCX; aO a float(*r14)
/* aO holds floating N/2 V1

else /* towp's proper position 0/rcopy - rbase
3.a in + 11CC; napI

SK i] I tamp; /0 Place tompoV *n14 a 00 a int(aO)
regir = regn -1I

SEnd HEAP nop3

regI xn*14
nap
regl a regl + rbase

/0 regl points to center elemet
aO - float(r14)
nap
naop
aO a sO*al
r14 aaO i int(aO)

nap
nap

regir *0n4
nap
regir *regin + rbase
r14 ar14 - 16

L10: regl -rbaseI

if(eq) goto Lll
arra, a Oregin

regl - regl - rinc
anra =*r0 eglI
goto L13
regi a regl

LIl: nap
Oregir - al -* 'vbase

118

Ihp

reglr a reglr - rinc
vr-gl - rbase

if(ne) goto 113

*rbse = al = ar-va
r5 a *r14.+.-r19
r6 - *r14.-.+r19Iv-7 = "r14.-rv19
0E - *r14++r19
vS a *rl44-.-v1
return (vs8)
r14 r r14 - 16

L13: r.gj M yogir"g2 =r"Il
rW-2 a rv-g2 - rcopy

,e•ej - regJ + meg2
r'egj a -o * v-Irnc

L14: regj - rv-glr
if(gt) goto L35
nop
rq - regir
if(ge) got L30

r.g2 = reg2 + rInc
al a *riegj - *reg2

flop
flop
flop
If(age) goto L30

flop
oregj - regj + rinc

L30: al - arra - *regj
reg2 - regJ
reg2 a reg2 - rcepy
reg2 = reg2 + rinc
if(age) goto L33
nop

*regi = al - *avgjhop
r~egt ,, regj

goto L14
rego - rEnH + reg2

L33: regj = regir
lgoto L14

rej regj + rim
L35: *regi =al - ar'ra

goto L10
l ~ ~nop /*"" End HEAP **

HISTOG
Prototype: void HISTOG (int N, float SX[], int NPLOT, float *SCALE, float *UP, float *LOW, float

HIST[I)
Arguments: N Number of elements to bin

SX[] Array of floating point bin = Round(SCALE x (x, - LOW)),
elements to bin

NPLOT Number of bins in histogram Hist1(bin) - Hist1(bin) + 1.0
*SCALE Pointer to histogram scaling

factor
*UP Pointer to maximum bin value

*LOW Pointer to minimum bin value

119

I

I
SHIST[Histogram floating point array

Description : HIST bins incoming values according to their floating point magnitude. If NPLOT is 0, all
values are placed in the same histogram array, HIST. If value is greater than UP, the
maximum bin value is incremented. If value is less than LOW, the minimum bin value is
incremented. This routine is not optimal for the DSP because of the nops introduced when
binning the parameters. Compiling directly from C code and using other low-level routines

will increase flexibility.
void HISTOG (tat N, float SX[], int NPLOT, HISTOG: *r14+-r19 = r5

float *SCALE, float SUP, float *LOW, float *HIST) *r14. r19 - r7
register mnt i, bin, ptr; *r144-.rl9 - r9

*r14++r19 - rll1

for (i-0, ptr-O; iN; i++., ptr+=NPLOT) 5 r14-+r19 - 012
/* ptr = I NPLOT / *r14++r19 = a3 = a3

bin = (int) (*SCALE * nop I
(LIMIT(*LOW. *UP, SX[i]) - *LOW)); r14 - r14 - 52 /* (6+7)*4 ./

/* calculate bin 5/ r3 = Srl4++r19 /* HIST array ./
HIST[ptr + bin] += 1.0; r5 - *r14++rl9 /* LOW limit 5/

}rll = *r14++rl9 /* UPPER limit s/
/SIu End HISTOG 0'/ r12 = *r14++r19 /* SCALE */

r17 - *r14++r19 /* NPLOT intervals

rl = *r14-+r19 /* INPUT array ./
r16 = *r14++r19 /* N data */
r15 = r3 /* copy of histogram S/ I
r9 - A TEMP

r2 - A-ZERO
r4 - A-ONE
a3 - * ll - *r5
/* upper -lower limit 5/r17 - ni 2
r17 - r17 * 2
/* histogram block length */
r16 = r16 - 2
a3 = a3 * *r12
/* (upper - lower) * scale '/

hist1: aO = *r1 - *r5
/* prob value - lower limit */ I
nop
nop

aO = aO * "r12 /* scale /
aO = ifalt(*r2)
/* if aO < 0 then aO = 0 5/

al = *rll - *l•
/* upper limit - prob value 5/

aO - ifalt(a3)
/* if al < 0, aO = up - low '/
"r9 = aO - int(aO)
/. histogram length '/

hop
nop
nopI
r7 = *r9 /. load number into register "l
r3 = r15
r7 = r7 2
r7 = r7 2 /* multiply by 4/
r3 - r3 + r7 /" offset histogram 5/

*r3 = aO = *r4 + *r3
/* increment histogram */
if (r16-- >=O) goto histl

r15 = r15 + r17
/* new histogram location */
r5 = *r14+.rl9
r7 = 'r14++r19
r9 = *r14++r19

120

I

r1 = -*rl4++rl9
012 - *r14++r19
a3 - *r14+-+r19
return (08)
014 a 014 - 24 /= End HISTOG =/

I HORN

Prototype: float HORN (int N, float COEF[1, float X HORN
Arguments: N number of coefficients in polynomial

COEF[] Homer's algorithm polynomial coefficient array = CCo
X floating point x value

Description: HORN evaluates a polynomial expression according to Homer's Yk = C-k + X"Yk-,
algorithm. This algorithm has a vector dependence which
introduces a sop in the DSP code and thereby increases the k = 1,...,N
execution time by -50% over no dependence.

C code 0SP code

float HORN (nt N, float COEF(], float X) HORN: rl4 = r14 - 12
register int i; al *r14++rl9 /* X input "/
static float horn; r3 - *r14++rl9 /* COEF 5/

r2 =*r14++r19 /* N *

horn = COEF[O]; hOp
for (i=1; l<N; i-H) r2 - r2 - 2

horn - COEF[t] + horn * X; if (ml) goto home
return(horn); aO =*r34•
}/ End HORN turn/ r2 - r2 - 1

horn 1: nop
if (r2-- >=O) goto hornl
aO = *r3++ + aO * al

horne: return (r18)
nop /*** End HORN 5*5/

I INTA
Prototype: void INTA (int N, float SX[], int INCX, int Y[], int INCY)SArguments N number of elements in army

SX[] input floating point x array yd=(integer) x, : i=
INCX integer increment for x array
Y[] output integer y array
INCY integer increment for y array

Description: INTA converts an array of floating point values to an array of integer numbers. This requires
a single DSP operation per element.

121

C ode OSP ode
void INTA (int N. float SX[], int INOC, INTA: 14 a r14 - 20

Int Y[]. int INCY) 017 . *r14+-+r19 /* INCY /I
register tnt 1, j. n; rl a *r14++r19 /. Y ./ I

016 - *r14++r19 /* INCX 'I
n - N * INOC; r3 - *r14++r19 /* SX */
for (1-0, j.0; <n; it+INCX, j+-INCY) r15 a *rl4++r19 /I N /I

/*go through array/ rl7 ar17 2
Y[j] - (int) SX[i]; rl6 = r16 * 2

/* casting values as integers 0/ r16 a r16 * 2
/m** End INTA ****/ 015 - 15- 2

intal: if (rlS-- 3-0) goto intal
*rl++r!7 a aO - int(*r3++r16) m
return (r08)
nop /'* End INTA /

ISAMAX
Prototype: int ISAMAX (int N, float SX[, int INCX) m
Argumnents: N number of elements in array I I

SX[] floating point array i - IXI = sup(xl: j = O,...,N }.INCX array integer incrmecnt or step I

Description: ISAMAX finds the maximum absolute value m
of an array and returns the index corresponding to that array. Adapted from BIAS library.
This operation is more lengthy than other array operations but still well suited for DSPoperation.

C code OSP code

Int ISAMAX (int N, float SXU], int INCX) ISAMAX: 014 - r14 - 12
{ register int i, n, imax; r16 - *-14+.r19 /* INCX '/

static float smax; r2 - *r14++r19 /* SX 'I
r3 - *r14++r19 /* N '/

imax =0 ; r07 = r16 * 2
smax = fabs(SX[O]); -17 - r17 * 2 /* float Inc x I
for (i=INCX, nal; n<N; I +- INCX, n++) a - -*r2 /* initial maximum um

if (fabs(SX[i]) > smax) a0 - ifalt(*r2++r17)
{ imax a i; r3 - r3 - 2 /* N - 2 counter*/

smax = fabs(SX[i]); if (mi) goto isamaxe
} r3 - r3 - 1

return(imax); rlS 0 0 /* initial index -/
/*** End ISAMAX r/ rl - rlS

isamaxl: al a -*r2
al a ifalt(*r2++r17) I
al - - al + aO
r4 = rl /* save old max/
r05 a r15 + r16
rl a r15 /* store max /I
if (ale) goto newmax
nop
if (r3-- >-0) goto isamaxl
rl - r4 /* store old max/

newnax: if (r3-- >-0) goto isamaxI I
aO - - al + aO

isamaxe: return (r18)
nop /*"' End ISAMAX */

I
122m

I

LIMIT
Prototype: float LIMIT (float MIN, float MAX, float VALUE)
Arguments: MIN minimum clamping level

MAX maximum clamping level MHK', x < MIN,
VALUE input value x W MA, x> MAX,

or lower limit if x does not fall within its X, MIN _< x :r MAX.

range. This function has considerable
subroutine call overhead but is optimized
with respect to the DSP C-compiled version.

Ccode OSP code

float LIMIT (float MIN, float MAX, LIMIT: r14 r r14 - 12
float VALUE) aO = *r14++r19 /* start with VALUE S/

if (VALUE > MAX) al = -aO + *r14 /* compare with MAX',
return(MAX); /* check upper limit */ aO = ifalt(*rl4.-rl9) /* switch with MAX */

if (VALUE < MIN) al * aO - *r14 /* compare with MIN */
return(MIN); /* check lower limit */ aO = ifalt(*rl4++rl9) /* switch with MIN /

return(VALUE); return (r08)
} /'I** End LIMIT **I nop /*'* End LIMIT ==/

MAC
Prototype: void MAC (int N, float SX[], int INCX, float SY[], int INCY, float SZ[1, int INCZ, float

SA)
Arguments: N number of elements in army

SA floating point scale factor, a + aEyF
SX[] floating point x array

INCX integer array increment for x array
SY[] floating point y array
INCY integer array increment for y array
SZ[] floating point z array (output)
INCZ integer array increment for z array

Description: MAC (multiply-accumulate) is the elementary vector operation z = x + ay. This is a single
DSP instruction per element so it is well suited for DSP operation.

123

Ccodte 0oS code

void MAC (Int N. float SX[], int INCX, float SY[], MAC: r14 = r14 - 32
int INCY, float SZ[], Int INCZ, float SA) al = r144++r19 /* SA /

register int n, I, j, k; r15 = *r14++r19 /1 INC Z */
r2 - *r14++r19 /* SZ */

if (N < 0) r17 = *rl4++r19 /* INCY */
return; r4 = *r4l4i+r19 /* SY */

for (t=j=k-n=0; n < N; r16 - *rl4++r19 /* INCX ./
i+=INCX, J+=INCY, k+-INCZ, n++) r3 - *r14++rl9 /* SX */

SZ(k] = SXt] + SA * SY[J]; rl *rl4++rl9 /* N '/
} /~~*** End MAC *0*/ r16 = r16 * 2

r16 = r16 * 2 /* Inc x/
r05 - r15 * 2
r15 = r15 * 2 /* nc z*/

r17 = 07 * 2
rl7 = 17 * 2 /* inc y*/
rl rl - 2 /* N - 2 counter*/

macl: if (rl-- >=0) goto macl
*r2++r15 - aO - *r3++rl6 + al * *r4.+rl7

return (rl8)
hop /*** End MAC **/

PrttyeMATMULT
Prototype: void MATMULT (int M, int N, int P, float MATA[1, float MATB[], float MATC[MU

Arguments: M number of rows in matrix A
N number of columns in matrix A C = A x B,

and rows in matrix B
P number of columns in matrix B AERMxN BERNxP, and CERMe P
MATA[] input matrix A
MATB[] input matrix B I
MATC[] output matrix C

Description: MATMULT multiplies two matrices together and returns the result in matrix C. Matrices are
sent as one-dimensional arrays. Given that the matrices are arranged in row-major order, this
operation is well-suited for DSP operation. Other variations of matrix multiply that are not
include in this appendix are MATMULTI, MATMULT2, MATMAT1T, and MATTMAT.

Prototype : void MATMULTI (int M, int N, float MATA[], float MATB[], float MATC[]) I
C = A x B r where AeRW", BERPxN, and CERMxP MATMULT1

Prototype : void MATMULT2 (int M, int N, float MATA[], float MATB[], float MATC[])

C = A T x B, where AER•l, BElRmxP, and CeRNW MATMULT2

Prototype : void MATMATT (int N, int P, float MATA[], float MATC[])

C = A x A ' where AeRNxP and CERNxN MATMATT

Prototype : void MATTMAT (int N, int P, float MATA[], float MATC[])

C = A r x A, where AERNW and CERxp MATTMAT

I
124I

I

I
m coode OSP code

void IIATKULT (Irnt M, I nt N, Inot P, MATKULT: *r14++r19 - r5 /* save user regs .
float MATA[], float MATB[], float MATC[]) *r14++rl9 = r6

{register int m. n, p; *r14++r19 - r7

static float sum; *r14++r19 = rS
*r14++r19 - r9Ifor (re=O; re<M; m++) *r14++r19 - rlO

for (p-0; p<P; p++) *rl4++r19 = rll
{sum - 0.0; nop

for (n-0; ncN; n++) rl4 r4 - 52 /* (7+6) * 4 0/sum +- IOATA[m*N + n) HMAT[n*P + p]; r6 *r14++r19 /* address of C[OO] *

MATC[m*P + p] * sum; r5 *r14++r19 l* address of S[OO]
}r4 rn14++r19 /* address of A[0,O] 5/

,End ATULT /r3 *rl4-H-rl9 /* P /
r2 *rl4+-+rl9 /* N */Srl *r14++r19 /* M =

r7 r5 /* points to 811 5/

r8 A ZERO
al * '8
r05 - r3 *2
r15 - r5 * 2 /* r05 = 4P /
rl r rl - 2 /* loop counter for M/

matmulA: rl - r3 - 2 /* loop counter for P '/
matmulB: aO = al

4r - r4 /* points to Aik, init i-k-1 "/
r9 a r0 /* points to Bkj, init k=J-l /
/* computes sum of Aik*Bkj 5,
rlO r2 - 3

/* loop counter for k or N 5/

matmulC: if(rlO-- >=0) goto mataIC
A = aO + *r9++rl5 * *rS+-

/* k is the variable */
*r6++ - aO - aO + *r9++ * *r8++

/m stores CiJ "/
if(rll-- >-O) goto matmulB
r7 = r7 + 4 /" inc j and repeat/
r4 = r8 /* inc i or start of next row '/
if(rl-- >=0) goto matmulA
r7 - r5
/r restore pointer to point to Bll */
r5 = *rl4++rl9
r6 = *rl4.H-rl9

r7 = *rl4.Hrl9r8 - *r14.H-r19
r9 = *rl4.--rl9

rl0 = *rl4-Hrl9
rll = *r14..-r19
return (r18)
r04 -r14 - 28 /5*5 End MATKJLT '/

l MATVEC
Prototype: void MATVEC (int M, int N, float MATA[], float VECB[1, float VECC[])
Arguments: M number of rows in matrix

N number of columns in matrix (f = A x B,

MATA[] floating point matrix

VECB[] input floating point vector AERMx, BeRN and eERM

VECC[output floating point vector
Description: MATVEC multiplies an M xN matrix by a vector of length N. The matrix is stored as a one

dimensional array. Given that the matrix is arranged in row-major order, this operation is
well-suited for DSP operation.

125

I

code DSP codem

void MATVEC (int M, int N, float MATA(], MATVEC: r14 a r14 - 20
float VECB[]. float VECC[]) rl = *r14.r19 /* address of C[0O S/

register int m, n; r2 a *r14++rl9 /* address of B(O] 0/

static float sum; r4 = *r14++r19 /* address of A[0.0)] /
016 a *r14++r19 / N ./

for (m-0; m-cM; m"+) r15 a *r4l4r19 /* M /
sum = 0.0; r3 a A ZERO l
for (n=0; n<N; n++) al - 073

sum +- MATA[m*N + n] * VECB(n]; nop
VECC[m] = sum; r05 a r15 - 2 /* loop counter for M/

} r3 - r2
/atlEnd MATVEC =/* points to / k, initially sum o

Edatvecl: aO al /t computes sum of Aik/Bk
r17 0 r16 - 3
/0 loop counter for k or N /

matvec2: if(rl7-- >=0) goto matvtc2 I
aO - aO + *r3.. * *r44-
/* k is the variable */
*rl- = aO - aO + *r3++ * *r44++
/I stores Ci *I
if(r15-- >=0) 3goto matvecl
r3 - r2
/* points to Bk, initially kal 0/

return (r18)
nop /0*0 End MATVEC ,

MAXA
Prototype: float MAXA (mt N, float SX[, int INCX)
Argunents: N number of elements in array w - s

SX[I input floating point x array w=sup{x : j=O,...,N J
INCX integer increment for x array

Description: MAXA finds the maximum value in array x. This operation is well suited for DSP operation
through the use of the if)altO instruction.

C code OSP code

float MAXA(int N, float SX(], int INCX) MAXA: r14 = r14 - 12
register int i, n; r16 = *rl4++r19 /* INCX M / I
static float mx; r4 a *r144++r19 /* SX 0/

r17 = *r14++r19 /* N 0/
mx - SX40]; r16 a r16 * 2
for (i-!NCX. nal; n<N; i+=INCX, n++) r16 = r16 * 2

/* go through array 0/ al = *r4 /* Starting value 0/
mx (MAX(rex, SX[t]),- aO - *r4++r16

/* keep track of maximum 0/ r17 a r17 - 2

return(mx); if (ml) goto maxae
/*'' End MAYA 00*/ r17 a r17 - 1

maxal: al a aO - *r4

if (r17-- >=0) goto maxal
aO - ifalt(*r4+-ir16)

maxae: return (r18)
nop /*** End MAXA 000/

IU
126m

I

I

l MAXIND
Prototype: int MAXIND (int N, float SX[, int INCX)
Argunents: N number of elements in array I

SX[] input floating point x array I " x, -supx
INCX integer increment for x array

Description: MAXIND finds the index of the arry x, with maximum value. This operation is closely
related to ISAMAX.

C code DSP code

int MAXIND (int N, float SX[], int INCX) MAXIND: 014 a r14 - 12
{ register int 1, n; r16 - *r14++r19 /* INOC 1

static int indx; r2 = *rl4++r19 /* SX */
r3 a *rl4++rl9 /* N C/

indx a 0; r17 - r16 * 2
for (i-INCX, n-l; n<N; i+-INCX, n++) 07 = 017 * 2 /* float Inc xd0/

/* go through array */ aO = =r2++r17 /* Initial maximum /
(SX[i] > SX(indx]) r3 - r3 - 2 /* N - 3 counter*/

/I eep track of index whose value is max if (ml) goto maxindeI ndx a 1; r3 a r3 - 1
return(indx); r15 - 0 /* initial index /
S/*** End MAXIND */rl a r15

maxindl: al = *r2++r17
al - - al + a0
r4 = rl I* save old max
r15 x r15 + r16rl = rl5 /* store max "

if (ale) goto newmaxind
nop

if (r3-- ;-0) goto maxindl
rl x r4 /* store old max

mneeimaxind: aO - - al + aO
if (r3-- >-0) goto maxindl
hop

maxinde: return (r18)I flop /*** End MAXIND ***/

SPrototype: float MEAN (int N, float SX[], int INCX, float FACTOR)

Argunents: N number of elements in array
SX[] input floating point x array x E= X,
INCX integer increment for x array N t
FACTOR floating point multiplier (1/N)

Description : MEAN calculates the average value of an array x of N elements by using a
two pass algorithm. The first pass is used to center the data, and the second pass enables a
more accurate determination of the mean. FACTOR is passed to reduce the number of
unnecessary divisions. The array additions make this function well suited for DSP operation.

I

127

m

c OP codem

float MEAN (int N. float SX[], int INCX, MEAN: *rl4++r19 = a2 - a2
float FACTOR) nop

Sregister int I. n; r14 = 014 - 20 /I (1+4)*4 /
register float suml. sum2 a 0.0; a2 a *r14++rlg /* Factor dividing */

r17 a *rl4++r19 /* NCX I/

suml a CSUM(N. SX, INCX) FACTOR; rl a *rl4++r19 /* SX/
/1 first pass mean r1S a *r14++r19 /1 N /1

for (in=-O; n<N; i+-INC(, n+.+) r3 a A ZERO
sum2 +a SX[i] - suml; r07 = 717 * 2

/* second pass mean 0/r7 - r17 2

return(sum1 + sum2 * FACTOR); a r15 - 2
"/"÷÷÷ ÷ estimate of mean /

r06 r15 /* load count*/
a0 = *r3 /* load zero

meanll: if (r16-- 2-4) goto meanll
aO - aO + *r4++r17
r4 a rl /* Copy of SX =

016 a r05
al a aO * a2

/==*******************= second pass mean /
aO = *r3 /* load zero

mean2l: aO a aO + *r4++rl7
If (r16-- >=O) goto mean2l
aO - aO - al
nop
hop

aO - al + aO * a2
a2 - *r14
return (r18)
nop /*** End MEAN C/

MEDIAN I
Prototype: float MEDIAN (int N, float SX[, int INCX) m
Arguments: N number of elements in array =

SX[] input floating point x array (Um n Mdd
INCX integer increment for x array m =

Description: MEDIAN finds the midpoint index of array x and + X.- n.1 I
returns the value corresponding to that midpoint.
This function calls HEAP. Only slight speed
improvement is observed by making this a low-level function call. Array X is returned sorted.

I
I
I
I

128 I
I

I
C code Ow code

float MEDIAN (int N, float SX[], int INCX) MEDIAN: rl - r14 -u12

{register itn moed; *r14++r19 -r18 /* save return l /
*ro4++r19 at -1r1++r19 Is push row

HEAP(N, SX, INCX); /l sort array 'l *r14++r19 = aO = *rl++r19 /l values
med - N / 2; *rl4•rl9 aO a *r1++r19
if(2 mod N) /* even number of indices *Inop

return(0.5 ((SX[(med-l)*INCX] + call HEAP (r18) 1* sort 'I
SX[med*INCX])); medret: r08 = medret + 4

else /* odd number of indices/ r14 - r14 - 28
return(SX[med*INO(]); 15- *r14++r19 /* INOC '/

I/.,",N End MEDIAN **/ rl - *r14++r19 /* SX[] C/
r2 - *r14++r19 /* N */
r08 = *14 /* return addr. '/

r05 r05 2
0 r15 * 2
*r14 - r15
al a float(*r14)
r3 - r2 / 2 /* N/2/
*r14 = r3
aO - float(*r14)
hop
hop

aO = aO * al
*r14 - aO = int(aO)
r4 - r3 * 2
nop
nop

r3 - *r14

r3 - r3 + rl
aO - *r3 /* for odd *
r4 - r2 /* check even *

I if(ne) goto medanend
r3 - r3 - 015

aO - aO + *r3 /* add previous value a,
r4 - A HALF
flop
aO = aO * *r4 /* divide by 2 */

medanend: return (r18)
hop /aa, End MEDIAN ***/

I MINA
Prototype: float MINA (int N, float SX[, int INCX)
Arguments: N number of elements in array -O....,NISX[] input floating point x array I~ {, J O ~ ..

INCX integer increment for x array
Description MINA finds the minimum value in array x. This operation is well suited for DSP operation

through the use of the ifaltO instruction.

I
I
I

I 129

I

coade asp
float MINA (int N. float SX[], int INCX) MINA: r14 - r14 - 12

register int i, n; r16 a *r14++r19 /* INCX /
static float en; r4 - *rl4++rl9 /* S / m

r17 a *rl4.+rl9 /* N */
mn - SX[O]; r16 = r16 * 2
for (imINC(, n-l; n<N; i+-INOC, n++) r16 a r16 * 2

/1 go through array '/ al m *r4 / Starting value /
mn - OfiN(mn, SX[i]);.& aO - rl+rl6/* keep track of minimum 0/ r17 a r17 - 2

return(am); if (ml) goto minae
/m End MINA * / r17 - r17 - 1

minal: al --O+ Ir4
if (r17-- 3-0) goto minal
aO - ifalt(*r4++rl6)

tinae: return (r08)
nop /* End MINA M /

Prototype: int MININD (int N, float SX[1, ijt INCX M ININD
Arguments: N number of elements in army -

SX[] input floating point x array i - xZa mi{ x, j - O,...,N .

INCX integer increment for x array
Description: MININD finds the index of the array x with the minimum value. This operation is the inverse

of MAXIND. m
C aode OUP oodg

int MININD (tnt N, float SX[], tnt INCX) MININD: r14 - r14 - 12
register tnt i, n; r16 - *r14++r19 /* INX(*/ m
static int tndx; r2 - *r14++r19 /* SX */

r3 - *r14++r19 /* N */
tndx - 0; r17 - r16 * 2
for (i=INC., nal; n<N; i+-INOC, n++) r17 - 07 * 2 /* float inc x

/* go through array */ aO a *r2++r17 /* initial minimum 1/
if (SX[i] < SX[indx]) r3 - r3 - 2 /* N - 2 counter /

/* keep track of index whose value is mi n/ if (ml) goto mininde
Sndxa i; r3 - r3 - 1

return(indx); 0i5 - 0 /. initial index */
) /88.* End MININD rl - rl5

mintndl: al - *r2++r17
al - al - aO
r4 - rl /* save old min/
r15 0 n15 + r16 I
rl a r15 /* store min /

if (ale) goto new•inlind
flop
if (r3-- 3-0) goto minmndl
rl - r4 /* store old min*/

newimnnind: aO - al + aO
if (r3-- >-0) goto minmndl

mininde: return (018)
nop /** End MININD w/

I

130

I

m MINMAX
Prototype: void MINMAX (int N, float SX[1, int INCX, float *MIN, float *MAX, float *RANGE)
Arguments: N number of elments in arraySX[] input floating point x array won - sup{ Xy j - O,...,N }

INCX integer increme for x rayw(j*MIN pointer to minimu~m value in x arrayw = /{y:/=O,.,}

*MAX pointer to maximum value in x array RANGE = win - w."
*RANGE pointer to range of values in x array (

MAX -MIN)
Description: MINMAX finds the minimum and maximum values within a floating point array. Through the

use of the ifak() instruction, this function is well suited for DSP operation.

C code QP code

void MINIAX (int N, float SX[], int INCX, MINMAX: *rl4 - a2 - a2
float *MIN, float *MAX, float *RAGE) op

register int i, n; 014 - 14 - 24
rl - *r14++r19 /* RANGE*MIN = SX[O]; r2 a *r14++r19 /* MAX Sf*MAX a SX[0]; r3 = *rl4++r19 /* MIN -/

for (i=INCX, n-1; nlN; I+*INCX, n++) r16 = rl4++rl9 /* INOC X'
/I go through array 'I r4 - *rl4++r19 /I SX 5/

*MIN = QMIN(*MIN, SX[i]); 17 = *r14++rl9 /* N S/
*MAX = QMAX('MAX, SX[i]); r16 = r16 * 2

/* keep track of both min and max 0/r6 - 016 * 2

m al a *r4 /S Starting mi nI
*RANGE = *MAX - *MIN; /* calculate range S/ a2 - *r4++rl6 /* Starting max}/*=' End MINM'AX 0s./r7 - 017 - 2

if (ml) goto minmaxe
r07 07 - 1

minmaxI: aO = al - *r4
al = ifalt(*r4) /* new max
aO = -a2 + *r4
if (r17-- >=O) goto minmaxl
a2 = ifalt(*r4++r16)
*r3 = a2 - a2 /I store min /

r2 = al - al / store max'/
*rl , aO = al - a2 I' store range.I

minmaxe: a2 - *r14
return (r08)
nop /S** End MINIAX "'I

m MOMENT
Prototype: void MOMENT (int N, float SX[], int INCX, float *THIRD, float *FOURTH)
Arguments: N number of elements in array K

SX[] input floating point (centered) x array 3" moment - Xi
INCX integer increment for x array i-I

"*THIRD pointer to third moment (Skewness)
*FOURTH pointer to fourth moment (Kurtosis) A4

Description: MOMENT calculates the third and fourth moments of the centered x 4moment = 2.,

array. Skewness and kurtosis can be calculated from these moments
through scaling and offset constants (see Press [19881). Because of
the nops introduced through pipelining effects, this function is not as efficient for DSP
operation as the related SSQR function.

I
m 131

I

I

void MOM4ENT (int N, float SX[]. int INCX, MOMENT: *r14 = &2 a2

float *THIRD, float *FOURTH) nop
{relgister int i. n; r14 a r14 -20

static float too; rl a *r14++r19 /0 FOURTH /

r2 a *r14++r19 /* THIRD =/
*THIRD a *FOURTH a 0.0; r16 - *r14++r19 /* INC /I
for (Onn-O; n'cN; t.INC)C, n++) r3 a *r14.+r19 /1 SX /

temp - SX(i] * SXDi] * Sx(i]; rS1 a *r14e-r19 /0 N '/
*THIRD +- tamp; r4 a A ZERO

/* Calculate 3rd momant/ r16 - 16 * 2
*FOURTH +a SX[i] * tamp; rl6 w r16 0 2

/* Calculate 4th moment &/ aD - r4
} al a *r4

/*0n End MOMENT 05/ , - r15 - 2
momenti: a2 - *r3 *r3

hop
hop
al a al + a2 * *r3+-+r16
if (r1S-- --0) goto momentl
&2 a A + a2 * a2
r2 a al =round(al) / 3rd moment/I
rl - a0 - round(aO) /* 4th moment '/

a2 - *r14
return (0lB)
nop /*** End M •ET/

PROD
Prototype: float PROD (it N, float SX[1, mit INCX)
Arguments: N number of elements in array N

SX[] floating point array w X,
INCX array integer increment or step ElI

Description: PROD returns the cumulative product of an array SX. A single nop
introduced by pipelining effects reduces the efficiency for DSP operation by
-50%.

C rndp DSP code

float PROD (int N, float SX[], mnt INCX) PROD: 014 . r14 - 12
register tnt i, n; r17 = *r14++r19 /* INCX */
static float prod; r3 - *r14++rl9 /* SX[] */

r2 a *rl4++rl9 /* N */
prod - 1.0; rl = A ONE I
for (i-n-O; n<N; i+-INCX, n++) /* array */ aO - =*1

prod *= SX[i]; r17 = r17 * 2

/* calculating cumulative product ./ r17 x r17 * 2
return(prod); r2 a r2 - 2

End PROD / prodl: aO - aO * *r3++r17
if (r2-->=O) goto prodl

hop
return (r18)
nop /* End PROD */

I
U

1321

I

I

I QABS
Prototype: float QABS (float VALUE)
Arguments: VALUE floating point argument
Description: QABS returns the absolute value of a single argument. This function was w-Ij

introduced because of the poor efficiency provided by the AT&T C library fabsO
function.

C code aS~sp

float QABS (float VALUE) QABS: r14 a r04 - 4
return(fabs(VALUE)); &0 = -'r14

/* return fabs of value / aO = ifalt(*r14++rl9)
SI End QABS " I return (r08)

flop /* End QABS M /

QABSA
1 Prototype: void QABSA (int N, float SX[], int INCX)

Arguments: N number of elements in array
SX[input floating point x ary X, - Ix, I
INCX integer increment for x array

Description: QABSA converts all elements in array x to their absolute values. This operation is well suited
Scofor DSP operation.

void QASA (irt N, float SXKI]. nt INCX) QASSA: r14 = r14 - 12register int i, n;, 06 - *r14++r19 /* INCX *

rl a *r14++r19 /* SX */
for (i-n=O; n<N; i+=INCX, n++) /* array */r2 a *r14++r19 /* NUMBER *

SX[i] - QABS(SX[t]); r3 - rl
/* replace elements with their abs value */ r16 - 016 * 2

/ End QABSA 0 r16 - r16 * 2
r2 = r2 - 2

qabsal: aO = -*r3++r16
if (r2-- >=O) goto qabsal
*rl++r16 - aO = ifalt(*rl)
return (r08)
nop /"* End QABSA "*/

IJ QMAX
Prototype: float QMAX (float VALUEI, float VALUE2)
Arguments: VALUE 1 first floating point number

VALUE2 second floating point number Z, k X2,
Description: QMAX returns the maximum of two floating point numbers. w =X2>XI.

This function was introduced because of the poor efficiency of ,
the DSP C-compiler version.

I

133

I

A cod fW odefo

rloat (float VALUE1. float VALUE2) AX: r14 - r14 - 8

return((VALUE1 > VALUE2) ? VALUE1 : VALUE2); aO - *r14++r19 /. start with VALUE2 /
}/** End QMqAX "*/ al v aO - *r14 /* compare VALUE1 1/

&0 = ifalt(*r14++r19)
return (r08)
nop /** End 'AX*1

Prototype: float QMIN (float VALUEl, float VALUE2)
QM IN

Argments: VALUE 1 pointer to first floating point number
VALUE2 pointer to second floating point number lX1. X, !5X2

Description: QMIN returns the minimum of two floating point numbers. 2 =
This function was introduced because of the poor efficiency of [,<
the DSP C-compiler version. O

float (QIN (float VALUE1, float VALUE2) O'4IN: r14 - r14 - 8

return((VALUEl < VALUE2) ? VALUE1 : VALUE2); aO *r14.4+r19 /* start with VALUE2 */
} /*'* End QMIN ****/ al = -aO + *r14 /* compare VALUE1 */ I

aO - 1falt(*r14++r19)
return (r18)
nop /*** End *IlN */

SASUM

Prototype: float SASUM (int N, float SX[, int INCX)
1

Arguments: N number of elements in array
SX[] floating point array W Ix, II
INCX array integer increment or step L.1

Description: SASUM takes the sum of vector component magnitudes from the array SX.
Adapted from BLAS library. This operation is well suited for DSP
operation.

C code OSP code

float SASLM (,t N. float SX[], nt INCX SASL 1 = r14 - 12
register int n, 1; r17 = *r14++r19 /* INCX /I
float out; r2 -*r14++r19 /* SX s/

r3 - *r14++r19 /* N */
out =0.0; r4 = A ZERO
if (N 40) r17 x 717 * 2 I

return(0.0); r17 - r17 * 2 /* Inc x
for (i=n=0; n<N; i+=INCX, n++) aO = *r4 /* load zero 5/

out ÷= fabs(SX[i]); -3r3 - 2 /* N - 2 counter/
return(out); sasuml: al = - *r2
S/5*5* End SASUM **'/ al - ifalt(*r2++rl7)

if (r3-- >=0) go~to sasuml

aO = al + aO
return (r8)
nop /*** End SASLIM ***/

134

I

I

* SAXPY
Prototype: void SAXPY (int N, float SX[1, int INCX, float SY[1, int INCY, float SA)
Arguments: N number of elemets in array + I Ž]SX[floating point x arrmy " "÷a

INCX integer amy increment for x array
SY[I floating pointy arry (output)
INCY integer array increment for y array
SA floating point scale factor, a

Desciption: SAXPY is the elementary vector operation y - y + ax. Adapted from BLAS library. Array
multiplication and accumulate make this well suited for DSP operation.

C co de
ISP code

void SAXPY (int N, float SX(], int INCX, SAXPY: r14 = r14 - 24
float SY[], int INCY, float SA) al = *rl4++rl9 /* SA /

register int n, i, J; 17 - *r14++r19 /* INCY '/
r4 = *r14++rl9 /* SY */

if (N < 0) 016 = *r14++r19 /* INC /
return; r3 = *r14++r19 /. SX */

for (t=j=n=0; n < N; 1 +- INCX, j +- INCY, n++) rl = *14..r19 /* N 1
SY[J] += SA * SX[i]; r16 = r16 '2

}/* End SAXPY ****/ 1 6 * 2 /* inc x/
r17 = r17 * 2
r17 - r17 * 2 /* inc y
rl = rl - 2 /* N - 2 counter *

saxpyl: If (rl-- ;=O) goto saxpylI r4++r17 - aO a *r4 + al * i r3++r16
return (08)
hop /*** End SAXPY **/

U SCALCPY
Prototype: void SCALCPY (int N, float SX[int INCX, float SY[1, int INCY, float SA)
Arguments: N number of elements in array

SX[] input floating point x array •=a

INCX integer increment for x array
SY[I output floating point y array
INCY integer increment for y array

SA floating point scaling factor
Description: SCALCPY multiplies the input array, x, by a floating point scalar and then copies x to y.

Array multiplication makes this well suited for DSP operation.

IU
I
I
i 135

I

I

coade ISP o= I
void SCALCPY (int N. float SX[], int INCX, SCALCPY: r14 - r04 - 24

float SY[], int INCY, float SCALE) al - r14++rl9 /* SA /
Sregister Int I, J, n; r16 a *r!4++r19 /. INCY .m

r - *r14++r19 i* SY */

for (i-j-n-0; n4N; i+-INCX. J+-INCY, n++) r07 *r14++r19 /J INMC s/
SY[j] - SX[i] * SCALE; rl - *rl4++rl9 /* SX S/

/* scale all elemnts in X s/ r3 = *rl4+rl9 /, N .
/., lEnd SCALCPY 0,9/ r16 - 016 S 2

r06 = r16 .2 /* inc y .
r07 a r07 2

r07 - r- 7 * 2 /I inc x •
r3 a r3 - 2 /. N - 2 counter/ m

scalcpyl: if (r3-- 2-0) goto scalcpyl
*r4.-r16 * aO = al * *rl.irl7
return (r08)
np /*** End SCALCPY */

scoPY m
Prototype: void SCOPY (int N, float SX[, int INCX, float SY[], int INCY)
Argumnents: N number of elements in array

SX[] floating point x array [" i
INCX integer increment for I array
SY[I floating point y army (output)
INCY integer increment for y array

Description: SCOPY copies one vector onto another. Adapted from BLAS library. Automatic incrementing
of arrays makes this well suited for DSP operation.

C ode aP co 3
void SCOPY (int N, float SX[], int INCX, SCOPY: r14 = r14 - 20

float SY[], int INCY) r17 = *rl4++rl9 /s INCY /
register int n, i, j; rl - *rl4++rl9 /s SY s/

r16 - *r14+-+rl9 /* INCX 5/
if (N < 0) r2 = *r14++r19 /* SXs./

return; r3 = r144++r19 /. N
for (i=j=n=0; nmN; i+=INCX, j+=,INCY n++) r16 = r16 * 2

SYvj] = SX[I]; r16 = r16 * 2 / inc x/
/** End SCOPY 07es/ ri7 = r17 * 2

r17 = 017 * 2 /* inc y .

r3 = r3 - 2 /. N - 2 counter/
scopyl: if (r3-- >-0) goto scopyl

*rl++rl7 = aO - *r2++r16 m
return (ri8)
nop /*" End SCOPY /

SDOT U
Prototype: float SDOT (int N, float SX[1, int INCX, float SY[1, int INCY)
Arguments: N number of elements in array I

SX[] floating point x array =

INCX integer increment for x array w x,,i
SY[] floating point y array
INCY integer increment for y array

Description: SDOT takes the dot (inner) product between two vectors. SDOT is adapted from BLAS

136

I

library. Array multiplication and accumulation makes this well suited for DSP operation.

C code DSP code

float SOOT (int N. float SX(], int INCX. SOOT: r14 - r14 - 20

float SY[], int INCY) r3 - A ZERO
[register int n, i, j; r17 = lrl4++rl9 /* INCY ./

float out; r4 - *rl4++r19 /* SY */
aO = *r3 /* load zeros!

out - 0.0; r16 = *r14++rl9 /* INCX */
if (N 0 O) r2 *r14++-•l9 /* SX =/

return(0.0); r3 = *r4+r19 /* N */
for (I-j-n-0; n4N; I+-INCX. J+-INCY, n++) r16 - 16 * 2

out +- SYCj] * SX[i]; 'l6 = r16 * 2 /* inc x
return(out); r17 - 07 * 2

}/ End SOOT 07**/ 7- r17 * 2 /* inc y*/
r3 = r3 - 2 /* N - 2 counter ./

sdotl: if (r3-- >=0) goto sdotl
aO = aO + *r2++rl6 * r4++rl7
return Cr18)
nop /"* End SDOT *r*/

SIGN
Prototype: float SIGN (float VALOUT, float VALUE)
Arguments: VALOUT value to be returned with sign (y)

VALUE value whose sign is returned (x) Y, x.01Description: SIGN transfers the sign of x to y returns it. Adapted from -Y. 0.
Fortran library. This was introduced to maintain compatibility
with FORTRAN routines.

C code OSP code

float SIGN (float VALOUT, float VALUE) SIGN: r14 r14 - 4
return((VALUE < 0.0) ? -QABS(VALOUT) : aO - -*r14 /* abs VALOUT /

QABS(VALOUT)); *r14 a aO i ifalt(*rl4)
/ End SIGN aO - -aO

r14 - r14 - 4
al - -*rl4+.+rl9 /* check VALUE sign "/
aO - ifalt(*r14.-+r19)
return (r08)
nop /* End SIGN M*5/

SIGNA
Prototype: float SIGNA (int N, float SX[], int INCX, float SY[J, int INCY, float OUT[])
Argumnents: N number of elements in array

SX[I input floating point x array i Xa0
INCX integer increment for x array w, =
SY[] sign transfer y array
INCY integer increment for y array
OUT[output array

Description SIGNA transfers the sign of values in the x array to y array
and then copies to the output array. This is useful for creating truncated waveforms or
assigning (+,-) values to an array.

137

C code DSP code

void SIGNA (int N. float SX[], int INCX, SIGNA: r14 = r04 - 24
float SY[], int INCY, float OUT[]) rl = *rl4++rl9 /* OUT /

register int i, J. k, : 07 = *r14++rl9 /* INCY /
r3 - "r14++r19 /5 SY "/

for (i=j=k=n=0; n<N; i+=INCX, j+=INCY, k+-, n++) r16 = *rl4++r19 /* INY */

/* go through arrays */ r2 = *r4l+r19 /* SX /
OUT[k] - SIGN(SX[i], SY[J]); r15 - *r14++r19 /* N /

/* transferring signs 07 ni 07 * 2
/ = End SIGNA / r7 r17 * 2

r16 = r16 * 2
r16 - r16 * 2
r15 - r15 - 2

signal: aO -*r3 I
*r14 = aO = ifalt(*r3++rl7)
aO = -aO
al - -*r2++r16
if (r15-- >=O) goto signal
•r1++ - aO = ifalt(*r14)
return (r08)
nop /*** End SIWGN **/ I

SNRM2
Prototype: float SNRM2 (int N, float SX[1, int INCX) I
Arguments: N number of elements in array

SX[] floating point array I
INCX integer increment for array w = X,=IIfU

Description: SNRM2 finds the Euclidean length of a vector. Adapted from il

BLAS library. For short arrays, the overhead associated with the
square root dominates. Otherwise efficiency is comparable to SSQR. 3

C code OSP code

float SNRM2 (int N, float SX[], int INCX) SNRM2: r14 = r14 - 12
register int n, i; r17 = *rl4++rl9 /* INCX (/ I
float out; r2 = *r14++rl9 /* SX */

r3 = *r14++r19 /* N */
out = 0.0; r4 = A ZERO
if (N < 0) r17 = ;17 * 2

return(0.0); r = r17 * 2 /* inc x I
for (i=n=O; n<N; i+=INCX. n++) aO = *r4 /* load zero

out += SX[i] * SX(i]; r3 = r3 - 2 /* N - 2 counter /
return(sqrt(out)); snrm2l: if (r3-- >=O) goto snrm2l

1 /5**5* End SNRM2 ***/ aO = aO + *r2++r17 * *r2
nop
* r14++r19 = r18*r14++r19 = aO = aO

call sqrt (r18)
sqrtl: r18 = sqrtl+4

r14 = r14 - 8
r18 = *r14
nop
return (r18)
nop /*** End SNRM2 ***/

I
I

138I

I

m SROT
Prototype: void SROT (int N, float SX[], int INCX, float SY[] int INCY, float COS. float SIN)
Arguments: N number of elements in array

SX(1 floating point x array x raiIc]~INCX integer increment for x array= • :i=I,.N

SY[I floating point yarray_____=_I___'_1____:
INCY integer increment for y array
COS cosine projection
SIN sine projection

Description: SROT applies a Givens plane rotation to the x and y arrays. Values for COS and SIN can be
obtained from SROTG. Adapted from BLAS library. Floating point multiplies and
accumulates on two separate arrays makes this well suited for DSP operation.

C code OW -1 '1

void SROT (int N. float SX[], int INCX, SROT: -,14.,19 - a2 = a2
float SY[]. int INCY. float C, float S) *rl4++rl9 = a3 = a3I register int n, i, J; hop

static float stemp; r14 - r14 - 36 /* (2 + 7 *4*/

al - *r14++rl9 /* S (sin) */
if (N - 0) aO = *r14++r19 /* C (cos) */

return; r17 - *r14++r19 /* INCY */
for (i-j=n=0; n<N; i+-INCX, J+=INCY, n++) r4 = *rl4.•rl9 /* SY */
{ r16 = *r14++rl9 /* INCX */

stemp - C * SX(i] + S * SY[J]; r2 = *r14++rl9 /* SX */
sY[J] = C * sY(J] - S * SXEI]; r15 x *rl4++rl9 /* N */

PSX[] - stamp; r06 = r16 2
) r16 - r16 * 2 /* inc x

} / End SROT ****/ r15 - r15 -2 /* N - 2 counter*/
17 = 017 * 2
7 = r17 *2 /* inc y*/

srotl: a2 = al **r4 /* S * SY*/
a3 = -al **r2 /* -S * SXs/
*r4++rl7 = a3 = a3 + aO * *r4

/* -S SX + C SY*/
if (r15-- >=0) goto srotl
*r2++rl6 : a2 = a2 + aO * *r2

/* S SY + C SX*/

a2 = *rl4++rl9
a3 = *r14++rl9
return (r08)
r14 x rl4 - 8 /*** End SROT **/

SSCAL
Prototype: void SSCAL (int N, float *SA, float SY[, int INCY)
Arguments: N number of elements in array

*SA pointer to floating point scale factor E "J
SY[] floating point array (output)
INCY integer increment for array

Description: SSCAL multiplies a vector by a scalar. Adapted from BLAS. Array multiplication makes this

well suited for DSP operation.

139

I

Ccode OSP code m

void SSCAL (int N. float SX[]. nt INCX. SSCAL: r14 1 r14 - 16
float SA) al - *r14.+r19 /* SA /

(nt n, 1; r17 a *r14++r19 /* INCX .m
rl = *r14++r19 /* SX S/

if (N < 0) r3 = *r14++r19 /* N 5/
return; ,17 = r17 * 2

for (t-n-O; n<N; i+-INCX, n++) r17 r17 2 /* inc x
SX[i] *- SA; r3 - r3 - 2 /* N - 2 counter I

) l m End SSCAL ,*5/ sscall: if (r3-- 3-0) goto sscall
*r1-4r17 = aO = al 0 *rl
return (r08)
nop /*5* End SSCAL 55l

SSQR
Prototype: float SSQR (mt N, float SX[1, iat INCX)
Arguments: N number of elements in array

SX[] input floating point x array []x 2
INCX integer increment for x array

Description: SSQR calculates the sum of squares of a vector's components. If the vector is
centered, this is equivalent to the second moment. Array multiplication makes
this well suited for DSP operation.

C code DSP code

float SSQR (nt N, float SX[], int INCX) SSQR: r14 = r14 - 12
register ant i. n; r17 - *rl4++rl9 /* INCX ./
static float out; r2 - *r14++r19 /* SX /

r3 - *r14+.r19 I* N m
out - 0.0; r4 - A ZERO m
if (N<0) 07 - 717 * 2

return(0.0); r17 - r17 2 /i tnc x/
for (i=n=O; n<N; i+=INCX, n++) aO - *r4 /* load zero

/* calculate sum of squares 5/ r3 - r3 - 2 /* N - 2 counter /
out +- SX(i] * SX[i]; ssqrl: if (r3-- >-0) goto ssqrl

/* for all values in SX */aO - aO + *r2++r1 7 * *r2

return(out); return (rl8)
/***S* End SSQR "*/ nop /S End SSQR../

Prototype : void SSWAP (int N, float SX[1. ant INCX, float SY[], ant INCY) SSW AP
Arguments: N number of elements in array

SX[] floating point x array L
INCX integer increment for x array

SY[] floating point y array (output)
INCY integer increment for y array

Description: SSWAP interchanges two vectors. Adapted from BLAS library. Automatic incrementing of I
arrays makes this well suited for DSP operation.

I
I

140 I
I

I

void SSWAP (int N. float SX(], tnt INCX, SSWAP: r14 - r14 - 20
float SY[]. tnt; INCY) r07 - 'Or14++r19 /* INCY *

{register 1mr n, I, J; rl - *r14++r19 /* SY */
static float slemp; 016 a *r14++r19 /* INCX *

r2 - *rl4++r19 /* SX S/
if (N < 0) r3 a*r14++r19 1* N /

return; r16 r16 2
for (i-jun=0; n<N; i÷=INCX, j+=INCY, n++) r16 - r16 * 2 /* Inc x 5/

{ r07 - 07 =2

stemp a SX[i]; r17 = 17 2 / inc y/
SX[i] = SYfj]; r3 = r3 - 2 /* N - 2 counter/
SY[j] = stomp; sswapl: aO - *r2

}*r2++r16 - al - *r!
}) /5*5= End SSWAP " /if (r3-- >0) goto sswapl

m rl++r17 = aO - aO

return (08)
nop /m End SSWAP

m SUBVEC
Prototype: void SUBVEC (int N, float SX[], float SY[], float SZ[])

Arguments: N number of elements in array
SX[] floating point x array input z"= - yI

SY[] floating point y array input
mZ Iz floating point output array

Description: SUBVEC subtracts two floating point vectors. Ihe modified values are returned in a separate
array. Array subtraction and automatic incrementing makes this well suited for DSP operation.

C code rSP code

void SUBVEC (int N, float SX[], SUBVEC: r14 = r14 - 16
float SY[), float SZ[]) rl = *r14++r19 /* output array SZ[]

register int n; r2 = *r14++rl9 /* input array SY[] */
r3 = *r14++rl9 /* input array SX[] 5/

for (n=O; n<N; n++) r4 *r144++rl9 /* # elements N =/
SZ[n] = SX(n] - SY(n]; nop

} ~~~End SUBVEC r4 = r4 - 2
subvecl: if (r4-->=O) goto subveclIrl++ = aO = *r3++ - *r2++

return (r08)
nop /55* End SUBVEC =*/I

SUMUNTIL
Prototype: int SUMUNTIL (int N, float SX[], int INCX, float SA)
Arguments: N number of elements in array

SX[] floating point x array

INCX integer increment for x array f--xi1 a
SA floating point ending value

Description: SUMUNTIL performs a cumulative sum on an array of numbers, returning
the index where the sum exceeds the value set by SA. This is useful for calculating quartiles.

The conditional statement decreases the performance of the DSP version.

141

!1_ _ _ _

I

C code OSP code m

int SUMJNTIL (int N. float SX[], int INCX, SLINTIL: *r14++r19 * a2 * a2

float SA) MOp
register int j, n; 014 = r14 -20 I
static float sum; a2 = *r14++r19 /* SA boundary /

017 - *rl4.-r19 /* INCX /
sum - 0.0; r3 - *r14++r19 /* SK(] 'I
n = N * IN(X; r2 a *r14++r19 /* N /
S- 0; r17 a r17 2

do 17 a 17 . 2 /* adjust for float =/

{ sum +- SX(j]; &0 a *r3++rl7
J ÷- INCX; r2 a r2 -2 /* loop counter'/

} rl -rl -rl

while ((j~cn) & (sumcSA)); rl = rl - I'/ set index counter '/
return(j-INCX); sumtol: al aO- a2 /" exceed SA check /
/***** End SUJUNTIL ****/ nop

flop
flopI
if (age) goto sumtoend
/0 check for end of summatlon '1
aO - aO + *r3++r17
if (r2-->=0) goto sumtol
rl - rl + 1
/* increment index counter ./

sumtoend: a2 - *r14
return (r10)
nop /*** End SULJNTIL ==/I

TRANSPOSE 3
Prototype: void TRANSPOSE (int M, int N, float MATA[1, float TRAN[])
Arguments: M number of rows in matrix

N number of columns in matrix B - Ar,
MATA(I input floating point matrix AW" a BENx
TRAN[] output floating point matrix

Description: TRANSPOSE returns the transpose of an M X N matrix. The matrix
is stored as a one dimensional array in row-major order. Because of automatic incrementing of
arrays, this operation is well suited for DSP operation.

C code OSP code I
void TRANSP (int N, r; P, float MATA[], TRANSP: r14 - r14 - 16

float TRAN[]) r3 - *rl4++r19 /* TRAN matrix t data /I
register int n, p; r4 = *r14++r19 /* MATRIX matrix-data /m

r2 = *r14++r19 /* P n p size I/
for (p-0; p<P; p,+) 07 = *r14++rl9 /* N n dat size 'I

for (n=O; n<N; n++) r16 r2 -2 /* copy- of P count /
TRAN[p*N + n] = MATA(n*P + p]; r05 = r17 * 2

/**"* End TRANSP ****/ r15 - r15 * 2
r2 - r16 /* n p size for loop *
r17 - r17 2 /* n dat size for loop '/
rl =r3 /" copy of TRANS"/

transpl: if(r2-- 3=0) goto transpl
• r3++r15 - aO - *r44-v

rl = rl + 4
r2 = r16
if(rl7-- >=O) goto transpl
r3 = rl
return (r18)

nop /*** End TRANSP "'I

142

I

I

I UPDATPROD
Prototype: void UPDATPROD (fit N, float SX[1, int INCX, float SY[1, mit INCY, float SZL 1, fit

INCZ)
Arguments: N number of elements in array .

SX[J floating point x arrayj YiYi - Z x'- z ,....N
INCX integer increment for x array
SY[] floating point y array - output
INCY integer increment for y array
SZ[I floating point z array
INCZ integer increment for z army

Description: UPDATPROD accumulates the product of elements in the x and z arrays in the y array. This
is useful for calculating covariance. Array multiplication and accumulation makes this well
suited for DSP operation. An additional instruction is introduced because only 3 memory
references are allowed per instruction.

I DSP ode

void UPDATPROD (int N, float SX[], int INCX, UPOATPROD: *r14++r19 = r5
float SY[], int INCY, float SZ[], int INCZ) nop
register int n, i, J, k; r04 = r14 - 32 /* (1+7)*4 *I

r15 a *r14++r19 /* INCZ ./
if (N < 0) rl = *r14++rl9 /* SZ */

return-, 07 - *r14++r19 /* INCY *
for (t-j-k-n=O; n<N; r4 a *r14++r19 /* SY */

m i+=INCX, J+rINCY, k+=INCZ, n++) r16 a *r14++r19 /* INCX
SY[j] +- SX[i] * SZ[k; v-2 - *r14++r19 /* SXi */} *==End UPDATPROD * /r3 - *r14++r19 /* N *

r5= r44

r16 = r16 * 2 /* inc */

r15 = r15 * 2
r15 = r15 = 2 /* Inc z
r3 = r3 - 2 /* N - 2 counter*/

updatpl: al = *r5++rl7
if (r3-- >=0) goto updatpl
•r4..r17 = aO = al + *r2++rl6 a "rl++r15
flop
r5 = *r14++rl9
return (r18)
r14 - r14-4 /***** End UPDATPRO0 ==/

UPDATSQR
Prototype void UPDATSQR (int N, float SX[],int INCX, float SY[1, int INCY)
Arguments: N number of elements in array 2

SX[1] floating point x array Yl " Yi X i
INCX integer increment for x array
SY[] floating point y array - output
INCY integer increment for y array

Description: UPDATSQR accumulates the square of the elements in the x array in the y array. This is
useful for calculating variance. Array multiplication and accumulation makes this well suited
for DSP operation. An additional instruction is introduced because only 3 memory referencesare allowed per instruction.

143

I

Cootde DSP code I
void UPOATSQR (int N, float SX[], int INOC, UPOATSQR: 14 = r14 - 20

float SY[], int INCY) r07 a *r14++r19 /1 INCY 0/
-register int n, 1, J; 4 - *r14*.r19 /* SY *I I

r16 - *r14++r19 /0 INCX 0/

if (N < 0) r2 n r144+r19 ./* SX '
return; r3 a *r14.r19 /* N -/

for (i-j-nO; n-N; n *+INCX. J+-INCY, n++) rl a r4
SY(j] +- SX(i) * SX[i]; r16 a r16 * 2

} /•'* End UPOATSQR / r16 r16 * 2 /* inc x*/
r17 a r17 * 2

r07 0 r7* 2 /* inc y
r3 w r3 - 2 /* N - 2 counter */ I

updatsql: al - *r1.-.r17
if (r3-- >-0) goto updatsql
*r4++rl7 a aO a al + *r2.+r16 * *r2
return (018)
nop /*.m, End UPOTSOR ,

UPDATSUM
Prototype: void UPDATSUM (int N, float SX[, int INCX, float SY(1, ,nt INCY)
Arguments: N number of elements in army . 1

SX[] floating point x array yj - y, + : N
INCX integer increment for x array
SY[] floating point y array - output
INCY integer increment for y array I

Description: UPDATSUM accumulates the elements in the x array in the y array. This is useful for

calculating a running mean. Array accumulation makes this well suited for DSP operation.

C code I•P code I
void UPDATSL4 (int N. float SX[], int INCX, UPOATSUM: u04 = 014 - 20

float SY(], int INCY) r07 i *r14++rl9 /* INCY "/
{ register int n, i, j; r4 - *r14++rlg /* SY */

016 - *r14++r19 /* INCX *

if (N < 0) r2 - *r14++rl9 /* SX 1
return; r3 - *rl4++r19 /* N a,

for (i=J=n-0; n<N; i+-INCX. J+=INCY, n++) r16 - r16 * 2
SY(j] +- SX[i]; r16 - 016 * 2 /* Inc x a/

} /.*-* End UPDATSUM aa, r17 - 017 * 2
r07 a r- 7 * 2 /* Inc Y/
r3 - r3 - 2 /* N - 2 counter*/

updatsl: if (r3-- >-0) goto updatsl I
*r4-+rl7 a aO - *r4 + *r2++rl6
return (r18)
nop /aaasa End UPDATSINIaaa

VECMAT
Prototype: void VECMAT (int N, int P, float VECA[], float MATB[1, float VECC[]) m
Arguments: N number of rows in matrix

P number of columns in matrix = B x A,

VECA[] input floating point vector mm
MATB[] floating point matrix AERN•, BERN, and eRp

VECC[] output floating point vector

Description: VECMAT multiplies an N x P matrix by a vector of length N. The matrix is stored as a one

144 I
I

dimensional army in row-major order.

void VEO4AT (int N, int P, float VECAC]. VEC4AT: *r14++r19 a r5
float MATS(]. float VECC[]) *r14++r19 a r6

(register int n, p; 'r14e-r19 a r7
static float sum; nop

r14 - r14 - 32 /* (3+5)'4'/
for (p-O; pcP; p+.) rv6 -a 14.r1-9 /I address of C[O] */sum = 0.0; r5 a *r14++r19 /I address of 8[,00] 0/

for (nO; n<N; n++) r4 = 1-4++r19 /0 address of AO] '/
sum += VECA[n] OATB(n*P + p]; r07 a *r14++r19 /* P */

VECC[p] - sum; r2 - 'r14++r19 /. N */
} rl a r5 /* points to 811 "

/m End VECMAT ="/r7 - A ZERO
al - *;77

r15 - 017 * 2
r05 ar05 *2 /* r5 a4PV7 a 0r17 - 2 /' loop counter for P /

vecmatl: aO - al
07- r4

/* points to Ak, Initially k-l '/
r3 a rl

/* points to SkJ, initially kajal '1
I' cooputes sum of AkB'Ik 8/
r16 - r2 - 3
/10 loop counter for k or N ',

veouat2: if(r16-- ,,=O) goto vecmat2aO a aO + *r3++r15 * "r7++

/* k is the variable */
*r6H• = aO - aO + *r3.- * *r7++
/* stores Cr */
if(r17-- 3-0) pogoto vecoatl
rl - rl + 4
/* incrownt J1 and repeat *
r5 a *r14er19

r6 a *r14++r19
r7 - *r144r19
return (018)
r14a r14 - 12 /.1t End VEWT

WDOT
Prototype: float WDOT (int N, float SX[], int INCX, float SY[1, int INCY, float SWI], int INCW)
Arguments: N number of elements in array NSX[] floating point x arrmy EW - •

INCX integer increment for x array
SY[] floating point y array
INCY integer increment for y array
SWI I floating point w arn y (weight)

INCW integer increment for w array
Description: WDOT takes the weighted dot (inner) product between two vectors. Adapted from BLAS

library. Array multiplication and accumulation makes this well suited for DSP operation.

145

float WOOT (int N, float SX[]. int INCX. WOOT: 014 - 014 - 28
float SY[]. int INCY, float SWC]. int INCnd r 3 a A ZERO

register int n, i, J. kC; 0i = Wr14+..rl9 I' INOC 1
float out; l-*l+r9/SW/

07l a 'rl44v-19 I' INCY '
out = 0.0;, r4 - *r14..v-9 I' SY '1
if (N 4 0) aO a r3 /'load zwr

return(C 0.0 0;,6 - *r14..rl9 1 INOC /
for (iajakanaO;ncN-,leaINCXJ~sINCY~k+aINCW~n.-i) r-2 a *rl4+4v-9 1' SX '

out +aSW~k] SY[jJ SX~l];. r3 a *rl4+e-vl9 /* N '
return(out) 05i - 0l5 '2

I/- End WOOT 055 lav-05 *2 /* lnc w/
0-6 - 0-6 * 2 I
0'6 a 016 * 2 /* inc x
0i7 - 07l* 2
07 = 07 *2 /* lnc yI
r3av-r3 -2 /*N - 2counter/I

wdotl: al = *r2a-.rl6 * r4.-er17
flop
if (r3-- >-O) goto wdotl
aO . aO + al * rle+v-l5I

flop /" End WDUT I

146

I
I

B Appendix - Random Number GenerationI
B.1 Random Number Generators

Computation-intensive statistical methods, such as, bootstrapping, shuffling, and Monte Carlo
simulation, require that a suitable random number generator be provided by the computer system.
However, many of the random number generators provided by systems are often inadequate for such
implementation. These statistical methods require a highly random generator with a long cycle
length, because of the large data sets they operate on and the large number of iterations they
perform.

Many of the random number generators used in systems are prime-modulus multiplicative
I congruential generators of the form:

F(z) = a * z mod m

I where a is an integer multiplier less than m, and m is a large prime integer (prime modulus). When
selecting a good random number generator, three important factors must be considered [Park 19881.

I 1.) Function must generate a full period of length m-1.
2.) The sequence of numbers should be uncorrelated and uniformly random.
3.) Can the function be implemented within the machines format?

B.2 The AT&T ran function

I The random number generator provided in AT&T's software library is a slight variation of
a prime-modulus multiplicative congruential generator which generates uniformly distributed real
values between 0.0 and 1.0. The function uses an initial seed which is continually updated and used
to determine the next random value. The function has the following form [AT&T 19881:

seed, = (25173.0 * seed,-, + 13849.0) mod 65536

seed,
ran 65536

I This routine has limited usefulness in statistical application, however, because it has a cycle
length of only 65536. For example, when bootstrapping is performed to determine the variability of
regression coefficients on 16 separate data sets, only 4096 distinct bootstraps are possible before
repetition occurs.

147

I

I

B.3 Improved Random Number Generator I
In order for a random number generator to be useful in statistical computations it must have

a very long cycle length, and we must be able to efficiently implement the function on the DSP. One
possible solution is to choose a larger value for the prime modulus m, and then select a multiplier
which would create a full cycle. These numbers would then be represented as floating-point integers
values since the DSP is only limited to representing integers as 16 bit values. However, this solution I
is also limited because the DSP uses only 23 bits to represent the fractional part of a floating-point
value. Thus problems can occur when the product of the multiplier and seed is so large that it must
be rounded to fit into the fractional field of the floating-point number. -

A better solution is to use a combination congruential generator, which has the form [Lewis
1989, Wichmann 19851:

seed', = al * seed%-, mod ml

seed21 = a2 * seed2'l, mod m2 I
seed3

1 = a3 * seed3 _, mod m3

ra seed'1• , seed2
1 seed3

1)mo

ran ml + m2 m3 1 mod 1

Then by properly choosing numbers for al, aZ a3 and ml, m2, m3 to be 179, 183, 182 and 32771,
32779, 32783 respectively, we can create a random number generator with a cycle of 8.8 trillion I
[Elkins 1989].

The major disadvantage with such a generator, though, is that it takes approximately three
times longer to generate the random number. While tests show that this factor of three is true for
the C coded version, the DSP version only takes twice as long.

Performing the same bootstrapping test that was used to evaluate the AT&T ran function on
the new random generator, we do notice improvement in the cycle time. The obvious major
advantage with this new random number generator is the fact that repetition of identical random data
sets is ualikely to occur.

148

C Appendix- Floating Point Format

C.1 DSP Floating-point Format

The data type format for representing single precision floating-point numbers on the AT&T
DSP32 differs from the IEEE standard used in most computer systems. As a result of this difference
in number representation, all floating-point numbers that are downloaded or uploaded between the
DSP and its host processor must go through a conversion process.

The number of bits which hold the mantissa and exponent are the same in each format,
however, their order and representation differs. The format for both DSP and IEEE are given below
for comparison [AT&T 1988]:

DSP: sfffffff ffffffff ffffffff eeeees

IEEE: seeseese efffffff ffffffff ffffffff

where. s = sign bit
f = fractional part of mantissa
6 = exponent

The actual floating-point quantity which is given in each representation can be calculated in base 10
by the following formulas:

I DSP: N = [(-2) • 01.F1 * 2(-'28)

I IEEE: N = (-1)s * I.F * 2 (-127)

From the above formula we can see that the mantissa for the DSP floating-point number is expressed
as a two's complement quantity as compared to IEEE's sign/magnitude quantity.

C.2 Conversion Process

The process for converting DSP format to IEEE format can be derived from the equations
given above, and involves the following steps:

1.) Save the sign bit, and take the two's complement of the mantissa if the sign bit is set
indicating a negative quantity.

2.) Subtract one from the exponent.
3.) Rearrange bits in the proper sequence according to IEEE format, placing the sign in

left most bit position, exponent in next 8 bit positions, and fractional part in last 23
bits.

The process is very similar for reversing the conversion process to go from IEEE to DSP. The only

149

difference being addition of one to the exponent instead of subtraction.

Originally the responsibility for performing all conversions was placed on the DSP because
it contained the necessary conversion routines in RAM or ROM. However, by providing the host
processor with the conversion routines, we then have the ability to observe and control intermediate
results. Thus the host can be used as a parallel monitor to help debug DSP programs, in addition
to being a top level interface to the DSP.

The ideal situation would be to have both the DSP and its host use the same floating-point
representation, in order to reduce overhead in the DSP execution. The table below gives the
overhead required for the floating-point conversion routines in the DSP32 running at 16 MHz
[AT&T 19881.

NUMBER OF EXECUTION U
INSTRUCTIONS TIME (psecs)

dsp32 12N + 11 3N + 2.75 I
ieee32 16N + 16 4N +4

Converting large quantities of data in addition to downloading and uploading of can take a
considerable amount of time. Although the AT&T DSP32C provides a one instruction conversion
process, the routine must still iterate through all data points for conversion. By using identical
floating-point formats between host and DSP, the amount of overhead will be reduced to the only
downloading and uploading processes. One such DSP which provides identical formats is the
Motorola 96002.

I
I
I
I
I
I
I!

150

I

D Appendix - DSP Device and Board Description

D.1 DSP devices

AT&T DSP32 and DSP32C. Since the AT&T DSP32 was used for benchmarking, we will
examine it in detaiL

AT&T developed the first floating point processor DSP32-250 (-250 refers to the instruction
cycle in nanoseconds) capable of a peak performance of 8 MFLOPS, in 1984. The DSP32 is a
general-purpose digital signal processor with 32-bit floating point arithmetic. The floating point adder
has 8 additional bits to provide higher accuracy when summing a number of terms. The DSP32-160,
a faster version of the same basic design, was released in 1986. This version has a peak performance
of 12.5 MFLOPS.

The DSP32C is the latest release and is available in both 100 ns and 80 ns versions. It is not
only faster than the original DSP32 but also supports additional instructions. The DSP32C also
supports a faster bus transfer rate which will speed up data transfer from and to hosL There is a
substantial price difference between the two processors due to the speed and complexity.

The DSP32C's more powerful instruction set includes a no-overhead do loop. This feature
could provide a vector loop improvement factor of 2x. The addition of fast conditional check
instructions, ifgt and ifalt, will speed up some algorithms, particularly those involving operations such
as MIN and MAX. The extended addressing of the DSP32C provides the capability of a greatly
expanded memory (24-bit address space) as compared with the 16-bit address available in the DSP32.

Both versions of the DSP32 use a modified version of the von Neumann architecture. The
majority of the operations are register transfer oriented. As such, the lower level operations are
similar to the standard microprocessors, On the other hand, the more complex operations, such as
MAC, use a notation that draws from C. This particular feature makes the assembly level
programming of the DSP32 much simpler than programming the conventional microprocessor.

CPUs. The DSP32 has two CPUs. The floating point CPU is called a Data Arithmetic Unit
(DAU) and the integer CPU is called a Control Arithmetic Unit (CAU).

Accumulators/registers. The DSP32 has four floating point accumulators. A total of 21 integer
registers are available. These registers are normally used for memory addressing and for integer
arithmetic. Some of these support special I/O functions.

Status indication. Status indication flags are implemented for both processors. These flags
are affected by the results of certain instructions. The user may test these flags using conditional
instructions.

Memory. Two different memory areas are used. These are on-chip and off-chip memories.
The on-chip memory provides the fastest access, but is usually quite limited. The off-chip memory

151

is used to provide for bulk data storage. 3
External bus. To provide a fast access DSP's usually separate address and data buses.

Parallel interface. The parallel interface provides the primary means for data transfer. Usually
the parallel interface is tied to the host bus with a suitable buffering.

Serial interface. In addition to the parallel interface, a high-speed serial interface is provided. I
Although this interface was not used during the initial investigation, it could provide additional data
transfer capability with multiple DSP boards. 3

Motorola 96002 (96K) The Motorola 96002 uses a Harvard architecture and supports two
separate memory banks. This type of architecture is particularly suitable for handling large problems.
Unfortunately, the Motorola instruction set has not been designed for the types of operations which
are commonly encountered in statistical computations. The instruction set has been optimized for
the FFT [EDN 1988]. As a result, its operation set is not quite as efficient as that of DSP32 when
applied to vector operations. On the positive side, the instruction set has a wide variety of move and I
store operations, including register-to-register and memory-to-register operations.

TI 320C30 DSP The TI 320C30 is a very popular DSP for stand-alone applications. It also n
has a real-time operating system (SPOX). It uses a single precision floating point (24 bit mantissa
and 8 bit exponent) representation which is a non-IEEE format, requiring data conversion. The chip
has a 2K x 32 internal RAM and supports 16M x 32 external memory. The floating point format
was the reason why this DSP was not further considered for the statistics workstation application.

NEC 77230 DSP This DSP supports single precision floating point (24 bit mantissa, 8 bit
exponent). It has a 1K x 32 internal RAM and supports 4K x 32 external program memory and 8K I
x 32 external data memory. The limited memory space rules it out as a candidate for statistics
workstation application.

Fujitsu 86232 DSP This DSP also supports single precision floating point (24 bit mantissa
and 8 bit exponent). It has a 512x32 internal RAM. However, it supports 64K x 32 external program
and IM x 32 external data memory. It uses IEEE format for floating point operations. It also
handles fixed-point and integer operations. This DSP can perform a 32 bit MAC instruction in two
75-nsec clock cycles. The Fujitsu 86232 is a very recent design and as such lacks the support that is
available for other DSP chips released earlier. It may, however, be a good candidate for future I
tradeoffs.

Next-generation DSP's It is expected that a number of new and more capable DSP devices
will be released from other suppliers. Thus, we can expect announcements from NEC, Analog
Devices, and other suppliers trying to establish a position in the DSP marketplace. NEC has
indicated that a new DSP, MPD77240, will be available later this year. This DSP will support a larger I
external memory space both for program (64K x 32) and data (16M x 32). Thus it also could be a
suitable candidate for future statistf,- workstation applications.

Some of the new microprocessors, particularly the reduced instruction set computers (RISC

I
152

I

devices), have internal pipelining and exhibit DSP-like capabilities". The Intel i860 is one of these
new processors. Not only does it have a high throughput, but it also supports some of the DSP
operations, as well as graphical operations. Therefore, the i860 is also a good candidate for future
statistics workstation expansion.

Overall, the next-generation DSP architectures (as well as conventional) borrows heavily from
the supercomputer architecture. Some of these features include more extensive pipelining, multiple
address and data buses, etc.

D.2 DSP Boards

A number of commercial DSP boards are available. The majority of these boards have been
developed for audio applications, such as speech processing. As a result, many of these boards have
analog signal interfaces and therefore are quite costly. However, for the statistics workstation
application, the analog interface normally will not be required. Fortunately, there are a number of
DSP boards available without the analog interface. A brief discussion of the DSP32-based boards
follows.

Communications Automation & Control, Inc. offers several DSP32 and DSP32C boards.
Their least expensive board (XN1-BO) uses DSP32 with a peak rating of 8 MFLOPS and a list price
of $795. An earlier version of this board (DSP32-PC) was used for our benchmarking. The DSP32C
boards start at $1695, unpopulated (basic memory requirements). 256 KBytes of zero wait-state static
memory lists at $1200. The same amount of one wait-state static memory costs half as much, $600.
Dynamic memory can also be used, but will carry some speed penalty. Since the static memory is
quite costly, memory can be partitioned to use different speeds and thus achieve a lower cost solution.

Burr-Brown also markets a PC/AT compatible DSP board. This board (ZPB34) uses the 80ns
DSP32C. It is available with 64KB to 576KB of high-speed RAM. Its price depends on the specific
memory configuration specified and range from $1995 (64 KBytes) to $4995 (576 KBytes). This
board is also suitable for use in a statistics workstation. However, some software modification would

Sbe required because of a slightly different interface arrangement.

Other DSP board vendors include Spectrum Signal Processing, Ariel, and Vector. Particularly
interesting is the recently announced Vector 32C/8500 board. This board also uses AT&T DSP32C
and is populated with 512 KBytes of static RAM and 8 MBytes of dynamic RAM for $6995. This
board could be well suited for a large-scale statistics workstation operating in a real time environment
where it is necessary to capture and process large amount of data.

In the future, additional boards will become available and the DSP board prices will decrease.
Part of this decrease will be due to lower memory prices, as static RAM production will increase.

I

I Some observers consider the DSPs themselves to be RISC devices.

153

1
I

E Appendix - Low-level Subroutine Performance. I
Table E.1 gives information on the execution of the low level BLAS and BSAS routines

provided in the statistical workstation library. The code for these routines has been optimized to
provide the best possible execution times. The information in the table was obtained from DSP
source code and by using the DSP simulator, which provided a profile of the code.

E.1 Number of Instructions

The number of instructions for each routine can be calculated from the DSP source code.
The majority of the routines depend on one or more variables which determine the number of 3
iterations in a loop. These loop variants are passed to the routines as parameters indicating the size
of arrays, and are represented in the table as M, N, and P.

The instructions not included in the loop are represented by the constant in the formula and
can usually be disregarded when the loop variant is very large. These instructions represent the
subroutine overhead, and are necessary to save registers, load registers, and prepare registers for the
return from subroutine.

Some of the routines, such as HEAP, INDEX, and SROTG, are much too complex to give
accurate measures on the number of instructions3". This is because their execution is determined
by ambiguous factors, such as, the initial ordering of the array or initial value of parameters. For
HEAP and INDEX routines, big 0 notation is used to describe the complexity of the routine. The
complexity of SROTG is constant, thus an estimation is given. Other routines, such as, ISAMAX,
MAXIND, and MININD also have ambiguities, and the number of instructions will fall between the
two quantities given.

E.2 Number of Nops

Because the DSP processor is pipelined, "nop" instructions are necessary to allow the i
processor to complete previously pipelined instructions so that their results can be used. A nop
represents a null operation, and when the processor encounters this instruction no action is taken.
Nops, however, can reduced the efficiency of the DSP code if they are inserted in unnecessary
positions in the code. The number of nops is given in the table to show the efficiency of the
optimized routines. 3

The majority of the routines in the table have a constant number of nops, indicating highly
efficient code. Some routines, however, contain nops within the loops, which is indicated by the
variable N in the formula. For example, HISTINT contains 7 nops in its loop, leaving only 15
effective instructions. These routines must contain these nops because their algorithm requires us
to continuously use previously calculated results. Although this reduces the efficiency, it is
unavoidable. I

3' INDEX and SROTG are not included in Appendix A due to complexity and space limitations. I
154

I

E.3 Number of Wait States

The DSP32 automatically produces wait states when a current memory address conflicts with
a memory access already in progress. These wait states allow the previous memory access to be
properly completed before the next address is placed on the bus. Although this allows flexible
memory organization, wait states degraded throughput by adding 25% to the instruction cycle.

The memory in the DSP32 is partitioned into two memory banks, an upper and a lower. The
memory map used when creating the table was to place the code and data in the lower bank, while
placing the stack in the upper bank. Thus, because code and data are located in the same memory
bank, wait states are introduced when a data read, a data write or an instruction fetch occurconsecutively.

Maximum throughput can be achieved by alternating memory accesses between the two
memory banks, thus eliminating any wait states. All of the wait states shown in the table can be
reduced to a constant or zero by wisely placing some data in the lower bank, and some in the upper
bank. However, this choice can be difficult, and currently is done manually. There is also no
guarantee that one particular memory format will eliminate wait states for all routines.

I E.4 Number of FLOPS

In the table, the number of FLOPS (floating-point operations) represents the number of inner

arithmetic calculations required to produce a floating-point result. This term should not be confused
with the performance measure floating-point operations per second. Instructions involving addition,
subtraction, multiplication or division of floating-point numbers are considered FLOPS. The DSP
instruction multiply-accumulate is an example of an instruction containing inner calculations, and is
then considered to take 2 FLOPS.

* Other instructions that were not considered but are worth mentioning are those DSP
instructions which also use the floating-point DAU (data arithmetic unit). Examples of these
instructions are; float, int, and ifalt. These were not considered because they are higher level
instructions and do not involve any obvious arithmetic, however, since their execution involves using
the DAU they should not be totally overlooked.

I E.5 Execution Time

The execution time of the routines given in the table is based on the DSP32 operating at
16MHz, giving an instruction cycle of 250ns. Calculation of the execution time includes the number
of instructions and one-quarter of the number of wait states. Again it is worth mentioning that by
wisely distributing data between memory banks, wait states can be eliminated and execution time
reduced. Selection of other DSP's operating at faster clock rates will also reduce execution time.

E.6 DSP32C/DSP32 Ratio

Execution time and performance can be improved by implementing the BLAS and BSAS
routines on the AT&T DSP32C. This DSP operates with an instruction cycle of 80ns, which creates

155

an obvious increase in execution time. In addition the DSP32C can improve performance of the code
with its no-overhead loop instruction. By implementing this option, it is possible to reduce most of
the loops given in the library by one instruction.

The ratio given in the table is determined assuming N is very large (N > > 100). All routines i
execute at least 3.125 times faster on the DSP32C because of the change in the clock rate. Routines
which currently contain 2 instructions in their loop can possibly double this by including the no-
overhead looping construct. The effect of wait states are not included in this factor, in most cases
they remain approximately same for the DSP32C.

I
i
I
I
I
I
I
I
I

I
I
I

156l

U

Routine Number of Number Number Number Execution time DSP32C
instructions of nope of waits of flops (psecs) /32 ratio

ABSDEV 5N + 17 1 2 2N 1.25N + 4.375 3.91

ADDCPY 2N + 14 1 2N -2 0 .625N + 3.375 6.25

ADDSCAL 2N + 14 2 2N-2 2N .625N + 3.375 6.25

ADDSCALCPY 2N + 18 2 2N -2 2N .625N + 4.375 6.25

ADDVEC 2N + 9 2 4N-2 N .75N + 2.125 6.25

CDF 2N + 15 1 2N- I N .625N + 3.6875 6.25

3 CENTER 2N + 10 1 2N-2 N .625N + 2.375 6.25

CSUM 2N + it 1 1 N .5N + 2.8125 6.25

3 CSUMSQ 4N + 15 N + 1 2N + 1 3N 1.125N + 3.8125 3.13

DIST 4N + 15 N + 1 2N + 1 3N 1.125N + 3.8125 3.13

3 EXPSM 3N + 24 2 2N + 1 3N + 1 .875N + .60625 4.69

FILL 2N + 12 1 N 0 .5625N + 3 6.25

3 FLOATA 2N + 14 1 2N 0 .625N + 3.5 6.25

HEAP O(N 10o2 N) 3.13

I HISTINT 22N + 30 7N + I 8N + 3 3N + 2 6N + 7.6875 3.13

HISTOG 19N + 32 5N + I ION + 3 4N + 2 5.375N + 8.1875 3.13

3 HORN 3N + 11 N + 1 N 2N .8125N + 2.75 3.13

INDEX 0(N log 2 N) 3.13

3 INTA 2N + 12 1 2N 0 .625N + 3 6.25

ISAMAX 1ON + 5 << N + 1 2N N + 1 2.625N + 1.25 < < 3.13
1ON + 7 << 2.625N + 1.753 __ ___ ___ ______ 2N

LIMIT 8 1 0 2 2.0 3.13

3 MAC 2N + 18 1 4N-2 2N .75N + 4.375 6.25

MATMATT N[(2P+3)N+ I N2(2P+ 1) 2N 2P .625N(P+ 1.3) + 6.25
5] + 21 +1 i.25N + 5.3125

MATMULT M[(2N+5)P+ 1 MP(2N + 2MNP .625MP(N+2.1) + 6.25
4] + 30 1) + 1 M + 7.5625

3 MATMULTI M[(2N+5)P+ 1 MP(2N+ 2MNP .625MP(N+2.1) + 6.25
141 + 30 1) + 1 M + 7.5625

3 Table E.1 : Timing of BLAS/BSAS routines

157

I

-R-uti-eRoutine Number of Number of Number of Number Execution time DSP32C
instructions nops waits of flops (psecs) / 32 ratio

MATMULT2 N[(2M + 5)P 1 NP(2M + 1) 2MNP .625NP(M + 2.1) 6.25 1
+4 + 32 + 1 +

N + 8.0625

MATTMAT P[(2N +5)P P(2N + 1) 2NP2 .625P 2(N+2.1) + 6.25 i
_____ +41 +21 + 1 P + 5.3125

MATVEC M(2N+3) + 2 M(2N+ 1) 2MN .625M(N+ 1.3) + 6.25
13 + 1 3.3125

MAXA 3N + 10 1 N + 1 N .8125N + 2.5625 4.69

MAXIND 9N + 8 N + I << N N- I 2.3125N + 2 << 3.13

< < ION+ 2N-1 2.5625N + 1

MEAN 5N + 24 4 3 3N + 3 1.25N + 6.1875 5.21

MEDIAN 39 + HEAP 7 + HEAP 2 + HEAP 3 9.875 + HEAP 3.13 5
MINA 3N + 10 1 N + I N .8125N + 2.5625 4.69

MININD 9N + 8 N + 1 << N N + 1 2.3125N + 2 < < 3.13
<< 1ON + 2N-1 2.5625N + I
4

MINMAX 5N + 17 2 2N + 4 2N + I 1.375N + 4.5 3.13 n

MOMENT 6N + 19 N + 1 2N + 5 5N 1.625N + 5.0625 3.75

PROD 3N + 11 1 1 N .75N + 2.8125 3.13 3
QABS 5 1 0 0 1.25 3.13

QABSA 3N + 10 1 3N 0 .9375N + 2.5 4.69 i

QMAX 6 1 0 1 1.5 3.13

QMIN 6 1 0 1 1.5 3.13

RANK 7N + 8 1 N 0 1.81257N + 2 3.13

SASUM 4N + 11 1 2N + I N 1.125N + 2.8125 4.17 3
SAXPY 2N + 14 1 4N - 2 2N .75N + 3.375 6.25

SCALCPY 2N + 14 1 2N-2 N .625N + 3.375 6.25

SCOPY 2N + 13 1 2N 0 .625N + 3.25 6.25

SDOT 2N + 15 1 2N + 1 2N .625N + 3.1825 6.25 5
SIGN 9 1 0 0 2.25 3.13

Table E. 1: Timing of BLAS/BSAS routines (continued) 5
158 i

i

I Routine Number of Number of Number of Number of Execution Urme DSP32C
instructions nops waits flops (ssecs) I DSP32

ratio

SIGNA 6N + 14 1 4N 0 1.75N + 3.5 3.75

SNRM2 2N + 20 + 4 + SQRT 2N + 1 + 2N + .625N + 6.25
SQRT SQRT SQRT 5.0625 +FSQRT

SROT 5N + 20 1 3N + 2 6N 1.4375N + 3.91
5.125

SROTG t 123 <<428 39 << 112 17 << 53 4 << 31.8125 << 3.133 107 110.3125

SSCAL 2N + 10 1 2N- 2 7 .625N + 6.25
i _2.375

SSQR 2N +11 1 2N + 1 2N .625N + 6.25
2.8125

3SSWAP 4N + 13 1 4N 0 1.25N +3.25 4.17

SUBVEC 2N + 9 2 4N- 2 N .75N + 2.125 6.25

SUMUNTIL 8N + 14 3N +2 2 2N 2N +3.625 3.13

TRANSP N(2P+4) + 1 2NP 0 .625N(P+ 1.6) 6.25
13 + 3.25

UPDATPROD 3N + 21 2 4N 2N N + 5.25 4.69

UPDATSQR 3N + 14 1 4N 2N N + 3.5 4.69

UPDATSUM 2N + 13 1 4N-2 N .75N + 3.125 6.25

VECMAT P(2N+5) + 1 P(2N+ 1) + 2NP .625P(N+2.1) 6.25
21 1 + 5.3125

WDOT 4N + 19 N + 1 2N + 1 3N 1.125N + 3.13
S114.8125

Table E. 1 : Timing of BLAS/BSAS routines (continued)

3 SQRT subroutine given in AT&T library contains:
Number of instructions: 50
Number of nops: 5
Number of waits: 16
Number of FLOPS: 35
Execution Time: 13.5 psecs

I t Calculations for SROTG are based on estimations.

159

I
I

F Appendix - DSP COFF file description I
DSP assembler. The DSP assembler translates assembly language files into machine coded

instructions, producing object files. These files include DSP code instructions, relocation information,
global identifiers, and externals. Binary instructions are grouped into sections. Assembler directives I
identify these sections in the source file. Each section of the source file is assembled using its own
location counter with a default value of zero. The assembler also has the capability to set up the
location counters. After the individual sections have been compiled, they are combined by the link 3
editor. For example, all of the DSP routines in Appendix A were assembled into object files and
placed in a library for access by a high-level language.

DSP link editor. The link editor creates load modules by combining object files, performing I
relocation, resolving external references, and supporting symbol table information for symbolic testing.
By combining relocatable object files, the link editor produces an absolute executable object file. The
link editor's command language permits specification of memory configuration of the DSP,
combination of sections, locating sections at specified addresses, and definition and redefinition of
global symbols. This capability permits precise control over the object files and their position in
memory. This is accomplished by binding the object code. Binding in the linking process refers to I
specifying a starting address in the memory.

DSP object files are produced by both the assembler and the link editor. The link editor I
accepts relocatable object files as input and produces an output object or executable file which cannot
be relocatable. Files produced from the assembler are in the common object file format (COFF).
The object file consists of a file header, optional header information, a table of section headers, the I
data for each section, relocation information, line numbers, and a symbol table.

COFF files. This file format is used both by the DSP assembler and the link editor. There
are many advantages of using COFF files. The most important one is that the COFF files contain
all of the necessary information needed for DSP operation. If DOS files were used much of this
information would have to be generated locally by a separate program.

Although the COFF files contain information which is not always needed, this information
can be easily bypassed because the file and section headers contain pointers indicating where the
various data elements are stored.

COFF file structure is defined in the UNIX documentation and is relatively complex andhighly flexible to permit its use in a variety of situations. Fortunately for implementing DSP
programs, only a subset of the available capabilities is needed.

A short description of COFF is provided below. Complete details are available in the UNIX I
documentation.

File header. File header contains general information. This information can be used to
determine if proper file format has been specified. For example, the first entry in the file header is
the "Magic Number" that specifies the system and the processor on which the code is executable.

160 3

I

I Checking this number helps to determine if the file is compatible with the processor used in the
system.

I Sections. COFF file is divided into sections. Each section has its own header which contains
general data description. A section is identified by a starting address and a size. The physical address
of a section is an offset which can be used to determine the absolute address. The section is the
smallest program unit of relocation and must be a continuous block of memory. Sections from irput
files are combined to form output sections that contain executable code. Although there may be
holes between output sections, storage is allocated contiguously within each output section. Since
the section order is program dependent, this order is retained in the COFF file and is used by the
data extraction program.

The specific section types are indicated by the section header flags. The key sections include
executable code (.text), initialized data (.data) and uninitialized data (.bss). Symbolic names for these
sections are shown in parentheses. In addition to these sections, there are others for comments,
overlays, libraries, and others. Altogether COFF allows twelve different section formats.

Symbolic labels and table. Although symbolic labels (names of variables) play an important
role during the program development and debugging, symbolic labels are not needed in the
operational DSP program and are stripped off by the load editor when loading the COFF file to the
DSP. Therefore, if symbolic access to specific DSP memory locations is desired, the host program
must maintain a DSP symbol table which contains the specific DSP memory addresses. Global and
external symbols are then kept in a symbol table in order to resolve references across input files.

The symbol table contains all of the applicable symbols and their classes. This includes names
for files, functions, local symbols, statics, and global symbols. The type field in the symbol table entry
specifies the type of the symbol, such as character, integer, floating point, or other. In the COFF file3 16 different symbol types can be identified3".

This table, however, should be limited to only those symbolic labels which are needed during
normal operation of the program. The initializing utility program determines if any duplicate labels
exist and issues error message and diagnostic information in case of duplicate labels. Typically, most
of the global labels in the DSP program will be included in the symbol table.

I

32 If the symbol name is eight characters or less then the full symbol name is stored in the symbol table.
Otherwise the DSP32 compiler considers only the first eight characters to be significant.

161

I
G Appendix - Statistical Software Survey

This appendix reviews some of the important features of existing software packages and
support tools that could be incorporated into the statistics workstation.

G.1 Statistical packages

S-Language. The S language is very flexible, has a large user base, and can handle a large
variety of statistical computations [Becker 1988]. The developers of this language call it a
programming environment for data analysis and graphics. This high-level interactive language is
integrated in a UNIX environment and has many similarities to the C language. Data management I
support allows easy organization, storage, and recall of data. The S language library also contains an
extensive collection of well known statistical data bases.

The basic issues to address when considering the use of the S language are: U
"o Because the high-level commands are interpreted, the computation rate is significantly

reduced. This loss in computation speed is partially compensated by using compiled
procedures and functions.

"o The use of compiled functions and procedures require that before these are added to the
library, they must be compiled and stored in the library module. The added functions and
procedures can be programmed in either FORTRAN or C.

One disadvantage of using the S language is the need to learn the command language 1
structure. This structure is complex and some of the commands may appear awkward to
inexperienced users. 3

Statgraphics. Statgraphics is another integrated system for interactive data analysis. It also
supports data management and provides a flexible graphics display capability. Selection of variables,
data transformation, and selection of options is done in screen editing format, instead of user typed I
commands. Statgraphics is unique in that it is based on APL, a very compact and terse language
suitable for vector and matrix operations. Therefore, knowledge of APL is very helpful when using
and extending the capabilities of this program.

TIMESLAB. TIMESLAB [Newton 1988] has been developed as a time-series teaching
program. A wide range of commands are available and these commands can be used to develop more i
complex macro commands. This particular package, however, is directed at a more specific audience.

Simulation Languages. Simulation is becoming more important in statistical analysis.
Although the majority of simulation languages are general purpose, they can be applied to a variety I
of statistical analyses. The most often used simulation languages include GPSS (general purpose
simulation system) and SIMSCRIPT. GPSS/PC is highly interactive and supports all edit, compile,
link, run, and debug operations in an integrated environment. Typical applications include business,
warehousing, manufacturing, distribution and other similar discrete systems.

1
162

I

G.2 Spreadsheets

The majority of the spreadsheets include some form of statistical computation capability. In
addition, the macro language supplied gives the user some programming flexibility. However, a major
disadvantages in using spreadsheets is the slower speed due to the interpretation of most commands.
The popularity of the spreadsheet format is evidenced by the number of statistics packages that
include some form of spreadsheet data input (such as Minitab).

Conventional Spreadsheets. Representative examples of commonly available spreadsheets are
Borland-QuattroTm and Lotus-123Tm. They both have limited statistical commands; multivariate linear
regression is one of the most powerful of these. These spreadsheets, however, benefit from wide
usage in applications ranging from business to scientific computations. It is important to note the
important advantages and liabilities of spreadsheet programs:

"o The spreadsheets have good data handling capabilities. The data is always visible to the user.
The spreadsheet commands are highly interactive and menu-driven.

" Spreadsheets have good graphing capabilities, although due to their origins in the business

environment, they tend to emphasize pie charts and bar graphs.
o They feature symbolic and algebraic programming capabilities. However, the spreadsheet

commands and formulas are interpreted through a macro processor. The interpretation
introduces overhead and makes any lengthy computation very slow.

"o Due to the wide use of the packages, and in particular of Lotus 123TM, add-on programs exist
which are designed to speed up or increase the flexibility of certain aspects of the package.

Stochastic Spreadsheet. An interesting offshoot of the spreadsheet is the stochastic
spreadsheet, which is designed to do Monte Carlo simulations [Rubinstein 1986] on what are
essentially spreadsheet formulas [Coe 1989]. This enables the users to do probabilistic sensitivity
analysis instead of the sensitivity tables currently employed for one or two values [Quattro 1989]. Aswith most Monte Carlo experiments, the simulation times can become quite lengthy for complicated
expressions. In a similar fashion, special purpose spreadsheets for data analyses can be developed.

G.3 Algebra and Matrix Packages

There are several packages available that concentrate on the mathematical aspects of problem
solving. They can be considered as auxiliary tools for the statistician. These include MATLAB'm
(primarily for matrix computations [Coleman 1988]), MathCadTm, MathematicaTM, and MacsymaTM.
These packages are all highly interactive, in that most equations can be positioned on a scratch-pador worksheet. They also feature symbolic computations that are not restricted to cell references as
in the spreadsheet packages. Iteration and step size control is provided for doing integrations.

The packages offer simple and flexible programming. They are often used to prototype an
algorithm before the high-level language version is to be written. Several packages have sophisticated
graphics (such as contour plots and 3D views in Mathematica) which make them suited for
exploratory data analysis. The disadvantage of these programs is that much of the computation is
interpreted which leads to slower execution time.

163

I

ACRONYMS I

80x86 either 8086, 80286, 386, 486 Intel processor.
PS 106 second
ID one dimensional
2D two dimensional
Al artificial intelligence
ALU arithmetic logic unit
ANOVA analysis of variance
AR auto regressive
ARMA auto regressive moving average
BIOS basic input/output services
BLAS basic linear algebra subroutines
BSAS basic statistical analysis subroutines
CAD computer-aided design
CAU control arithmetic unit
CGA color graphics adaptor
CI computation-intensive i
CISC complex instruction set computer
CMOS complementary metal-oxide semiconductor
COFF common object file format I
CPU central processing unit
DAU data arithmetic unit
DMA direct memory access 3
DOS disk operating system
DRAM dynamic RAM
DSP digital signal processor
EGA enhanced graphics adaptor
FFT fast Fourier transform
FIR finite impulse response
FLOPS floating point operations per second
FPU floating point unit
I/O input/output
IEEE Institute of Electrical and Electronic Engineers
ifalt if accumulator less than
iid independent identically distributed
IIR infinite impulse response
MA moving average
MAC multiply accumulate
MB million bytes
MC Monte Carlo
MFLOPS million floating point operations per second
MHz million cycles per sec
ms 10.' second
MSDOS Microsoft DOS

164

NMOS n-type metal-oxide semiconductor
NN neural networks
fnop no operation
ns nanosecond
PC personal computer
PP projection pursuit
RAM random access memory
RISC reduced instruction set computer
rms root mean square
ROM read only memory
SAXPY Single-precision A * X Plus Y
SDL software description language
SOR simultaneous over relaxation
SPC statistical process control
SQC statistical quality control
SRAM static RAM
SVD singular value decomposition
SW statistical workstation
VGA video graphics array
VHDL VHSIC hardware description language
YACC yet anothcr compiler compiler

SYMBOLS

x mean k index
.f vector M number of elements
% modulus (C language) mod modulus
& bitwise AND (C language) N number of elements
&& logical AND (C language) P number of elements
+ + increment operator P(t) probabilityIa scalar sup suprenum
e iid noise t time
A failure rate w scalar result
p repair rate x, vector element
a rms deviation yl vector element
a scalar element zj vector element
A matrix - replace
AT transpose of matrix R set of real numbers
b scalar element H product
B matrix summation
- scalar element member of
C matrix fntof dot product
f(x) continuous function A- exchange
i index Ix I absolute value
I Identity matrix II II norm of vector
Sj index

1 6i

